

VRE4EIC

A Europe-wide Interoperable Virtual Research Environment

to Empower Multidisciplinary Research Communities

and Accelerate Innovation and Collaboration

Deliverable D3.5

Final Architecture Design

Document version: 0.1

Ref. Ares(2018)4999924 - 29/09/2018

VRE4EIC Page 2 of 125

D3.5 Final Architecture Design PU

VRE4EIC Page 3 of 125

D3.5 Final Architecture Design PU

VRE4EIC DELIVERABLE

Name, title and organisation of the scientific representative of the project's coordinator:
Mr Peter Kunz t: +33 4 92 38 50 10 f: +33 4 92 38 78 22 e: peter.kunz@ercim.eu
GEIE ERCIM, 2004, route des Lucioles, Sophia Antipolis, F-06410 Biot, France
Project website address: http://www.vre4eic.eu/

Project

Grant Agreement number 676247
Project acronym: VRE4EIC
Project title: A Europe-wide Interoperable Virtual Research

Environment to Empower Multidisciplinary Research
Communities and Accelerate Innovation and
Collaboration

Funding Scheme: Research & Innovation Action (RIA)
Date of latest version of DoW against
which the assessment will be made:

31 May 2017 Amended Grant Agreement through
amendment n°AMD-676247-8

Document
Period covered: M1-36
Deliverable number: D3.5
Deliverable title Final Architecture design
Contractual Date of Delivery: 30/09/2018
Actual Date of Delivery: 29/09/2018
Editor (s): Peter Kunz (ERCIM)
Author (s): Carlo Meghini (CNR ISTI)
Reviewer (s): Keith Jeffery (ERCIM)

Cesare Concordia (CNR ISTI)
Luca Trupiano (CNR ISTI)
Theodore Patkos (FORTH ICS)
Nikos Minadakis (FORTH ICS)
Yannis Marketakis (FORTH ICS)
Vangelis Kritsotakis (FORTH ICS)
Daniele Bailo (INGV)
Zhiming Zhao (UvA)

Participant(s): All project partners
Work package no.: 3
Work package title: Enhanced VREs
Work package leader: Carlo Meghini (CNR)
Distribution: PU
Version/Revision: 0.1
Draft/Final: Final
Total number of pages (including cover): 125

http://www.vre4eic.eu/

VRE4EIC Page 4 of 125

D3.5 Final Architecture Design PU

What is VRE4EIC?

VRE4EIC develops a reference architecture and software components for VREs (Virtual Research
Environments). This eVRE bridges across existing e-RIs (e-Research Infrastructures) such as EPOS and
ENVRI+, both represented in the project, themselves supported by e-Is (e-Infrastructures) such as
GEANT, EUDAT, PRACE, EGI, OpenAIRE. The eVRE provides a comfortable homogeneous interface for
users by virtualising access to the heterogeneous datasets, software services, and resources of the e-
RIs and also provides collaboration/communication facilities for users to improve research
communication. Finally it provides access to research management /administrative facilities so that
the end-user has a complete research environment.

Disclaimer

This document contains description of the VRE4EIC project work and findings.
The authors of this document have taken any available measure in order for its content to be
accurate, consistent and lawful. However, neither the project consortium as a whole nor the
individual partners that implicitly or explicitly participated in the creation and publication of this
document hold any responsibility for actions that might occur as a result of using its content.
This publication has been produced with the assistance of the European Uni on. The content of this
publication is the sole responsibility of the VRE4EIC consortium and can in no way be taken to reflect
the views of the European Union.
The European Union is established in accordance with the Treaty on European Union (Maastricht).
There are currently 28 Member States of the Union. It is based on the European Communities and
the Member States cooperation in the fields of Common Foreign and Security Policy and Justice and
Home Affairs. The five main institutions of the European Union are the European Parliament, the
Council of Ministers, the European Commission, the Court of Justice and the Court of Auditors
(http://europa.eu/).
VRE4EIC has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 676247.

http://europa.eu/)

VRE4EIC Page 5 of 125

D3.5 Final Architecture Design PU

Table of Contents

1 Introduction 7
1.1 Differences with D3.1 7
1.2 Structure of this deliverable and terminology 7

2 Deriving the VRE4EIC Reference Architecture 9
2.1 Introduction 9
2.2 Elicitation and collection of requirements 10
2.3 Functional architecture design 10
2.4 Architecture design 11
2.5 REFERENCES 12

3 The VRE4EIC Reference Architecture 13
3.1 VRE4EIC conceptual components 17
3.2 The System Manager component 17
3.3 The Workflow manager Component 20
3.4 The Metadata Manager 23
3.5 The Interoperability Manager 24
3.6 The Linked Data Manager 28
3.7 The AAAI component 29

4 The VRE4EIC technical architecture 31
4.1 Deriving the technical architecture 34

4.1.1 The GAP analysis 34
4.1.2 Node Service technological choices 35
4.1.3 Metadata Service technological choices 36
4.1.4 AAAI standards and technologies 37

5 The Canonical Reference Prototype 39
5.1 The choreography approach in eVRE: defining events and messages 39

5.1.1 The development environment 40
5.2 The Node Service in the CRP 41

5.2.1 The Node Manager 42
5.2.2 The User Manager 42
5.2.3 The Communication bus 44
5.2.4 Implementation choices and adopted technologies for the Node Service 44
5.2.5 Source Code, documentation, set up 45

5.3 The eVRE AAAI implementation in the CRP 46
5.3.1 Security and trust components 47
5.3.2 The Two-Factor Authentication (2FA) CRP 49

5.4 Implementing The Metadata Manager in the CRP 49
5.4.1 Implementation choices and technologies adopted 49
5.4.2 Metadata Service: the source code 50

5.5 The Workflow Service in the CRP 50
5.5.1 The Workflow Configurator 51
5.5.2 The GUI, the Workflow Executor, the Workflow Repository 52
5.5.3 Implementation choices 53
5.5.4 Source code, documentation and set up 55

5.6 The App Service in CRP 55

6 The VRE4EIC Metadata Portal 57
6.1 Introduction to this section 57

VRE4EIC Page 6 of 125

D3.5 Final Architecture Design PU

6.2 Targeted Objectives of the Design 57
6.3 Functional Model 58
6.4 Architecture of the VRE4EIC Metadata Portal GUI 62

6.4.1 Front End 62
6.4.2 Back End 63

6.5 Interactions of the VRE4EIC Metadata Portal with the eVRE building blocks 64
6.5.1 Node Service 64
6.5.2 Metadata Service 64

6.6 Technologies used in implementing the VRE4EIC Metadata Portal 65

7 Validating the VRE4EIC Reference Architecture: the EPOS and ENVRIplus enhanced VREs 66
7.1 The enhanced EPOS VRE 66

7.1.1 EPOS Integration with VRE4IC: workflows 66
7.1.2 EPOS architecture enhancement 67
7.1.3 EPOS functionality enhancement 67

7.2 Enhancement in ENVRI plus VRE 68
7.2.1 Community catalogue for cross-RI data and services 69
7.2.2 Architecture of the Metadata Catalogue Mapper (MetaCatMap) 71
7.2.3 Cross-RI workflow composition 71
7.2.4 Cross-infrastructure workflow execution and provenance 72

8 Conclusions 74

9 References 75

10 Annexes 76
10.1 Generalised functions 76
10.2 Requirements and components 94

10.2.1 Data Identification and Citation 94
10.2.2 Data Curation 95
10.2.3 Data Cataloguing 96
10.2.4 Data Processing 99
10.2.5 Data Optimization 103
10.2.6 Data Provenance 104
10.2.7 Collaboration, Training and Support 105

10.3 Conceptual components: Interface Descriptions 110
10.3.1 User Manager Interfaces 110
10.3.2 Resource Manager: Resource management interface description 113
10.3.3 Workflow Manager 114
10.3.4 MOM Component 115
10.3.5 Metadata Manager Interfaces 116
10.3.6 Query Manager Component: SearchAPI interface 120
10.3.7 Model Mapper Component 122
10.3.8 LDManager Component: 124
10.3.9 AAAI Component interfaces 125

VRE4EIC Page 7 of 125

D3.5 Final Architecture Design PU

1 Introduction

This is the second and final deliverable on architecture in VRE4EIC. The first (D3.1) explained the
methodology, approach and overall architecture. This deliverable provides details of the
architectural components, interfaces and related considerations leading to the technical architecture
and the canonical reference prototype. Components of the architecture have been utilised in EPOS
and ENVRIplus and validated there; the reference architecture has been demonstrated with the
Canonical Reference Prototype.

1.1 Differences with D3.1

In the section “The VRE4EIC Reference Architecture” of this document there are 5 component
diagrams that were not defined in the Deliverable 3.1, namely:

● The App Manager component diagram

● The Node Manager component diagram

● The Workflow Executor component diagram

● The Workflow Configurator component diagram

● The Workflow Repository component diagram

As described in the related sections, these are very important components and their design has
required an accurate investigation.

1.2 Structure of this deliverable and terminology

The deliverable is structured as follows:

 Section 2 presents the methodological approach that has been followed to design the
VRE4EIC Reference Architecture (RA). A Reference Architecture is a high level description of a
system in terms of its components and their relationships; essentially a RA provides a
template that can be used to implement systems in a family of applicative domains. The
VRE4EIC RA is designed to be used to build systems in the Virtual Research Environment
(VRE) domain. A VRE built using the VRE4EIC RA is called an eVRE.

 Section 3 presents the RA conceptual components, using UML Component Diagrams and
Package Diagrams. A conceptual component is a module that provides a set of homogenous
functionalities. The conceptual components of the RA are derived in the first part of this
section, following a vertical decomposition of functionalities in a multi-tiers view and then a
horizontal distribution of functionalities within tiers.

 Section 4 describes the development of a technical architecture for implementing the RA. A
technical architecture is a coordinated set of software modules, called building blocks, each
of which implements a conceptual component so that the component can be integrated into
an existing VRE (to enhance it to a eVRE) in the simplest possible way. In order to achieve this
goal, the Microservice paradigm is followed in deriving the technical architecture.

VRE4EIC Page 8 of 125

D3.5 Final Architecture Design PU

 Section 5 describes the eVRE developed in VRE4EIC, called the Canonical Reference Prototype
(CRP). It first introduces the general approach followed in the implementation (the
choreography approach) and then presents the implementation of the building blocks
defined in the Technical Architecture.

 Section 6 presents one GUI of the CRP, called the Metadata Portal.

 Section 7 describes the two enhanced VREs, EPOS and ENVRIplus.

 Section 8 concludes.

 The Annex documents the design of the RA by giving the list of Generalized Functions and the
tables containing the signatures of the functions designed for the Conceptual Components.
These structures are taken from D3.1 for self-containedness.

VRE4EIC Page 9 of 125

D3.5 Final Architecture Design PU

2 Deriving the VRE4EIC Reference Architecture

2.1 Introduction

In literature, software architecture development targets the definition of a structured solution able
to satisfy the functional and non-functional requirements of an application domain. Thus the
development of a software architecture involves different points of views: the user, the system (the
IT infrastructure), and the business goals. For each of these areas, the key scenarios/requirements
should be identified as well as quality attributes. Then requirements should be refined into
architectural functions and mapped into specific architectural components or modules.
This process raises a series of criticalities and issues and should be carefully developed so as to avoid
architectural failures or incompleteness. For this reason, in the last 10 years different approaches for
architecture specification have been proposed, largely inspired from the Software Development Life
Cycle, SDLC [ISO/IEC 12207]. This is a well-defined, structured sequence of stages targeting the
specification and the successive development of the intended software product. It involves a series
of decisions based on a wide range of factors, and each of these decisions can have considerable
impact on the quality, performance, maintainability, and overall success of the application.
A typical SDLC includes different activities such as: understanding of business needs and constraints;
elicitation and collection of requirements; functional architecture design; architecture de sign;
implementation; testing; deployment; maintenance.
The order in which these activities are to be executed is usually defined into a specific software
development process such as Waterfall model, incremental model, RUP, V-model, iterative model,
RAD model, Agile model, Spiral model, Prototype model, to mention just a few [SE].
In the development of the Reference Architecture reported by the present deliverable, an
incremental software development process largely inspired by the RUP process [RUP, UP] has been
followed. In this Section, the main characterization of the process to the specific exigencies of the
project constraints and activities are schematized. In particular, the Section provides details about
activities concerning the software architecture specification and design that are: elicitation and
collection of requirements; functional architecture design; architecture design.
The process characterization has been performed in collaboration with the different partners,
considering the output of the other deliverables (see previous Section) and analyzing the current
available proposals of VREs. As a consequence, the Reference Architecture specification provided in
this deliverable will document two views:

1. Component diagram: it describes the components necessary to implement the eVRE

functionalities. It visualizes the physical components in a system as well as the interfaces

among them.

2. Interaction diagrams: they describe the type of interactions among the different components

of the architecture and represent the part of dynamic behavior. We consider in particular

sequence diagrams that emphasize the sequence of the message exchanges in time.

In the remaining of this Section, the main activities of the SDLC specifically characterized for the eVRE
architecture specification are presented.

VRE4EIC Page 10 of 125

D3.5 Final Architecture Design PU

2.2 Elicitation and collection of requirements

Elicitation and collection of requirements is a fundamental stage in the eVRE architecture
specification. In the context of the VRE4EIC project, this stage has been carried out by task 2.1. From
a technical point of view, it involves different stages such as [ISO/IEC/IEEE 29148]:

1. High-level use case definition: A representative of the stakeholder community presents the

business/mission drivers for the eVRE considering also quality attributes, security aspects.

2. Use case definition: Stakeholders express scenarios representing their concerns about the

system prioritizing when possible the main ones.

3. Specification eVRE requirements: the main use cases are analysed and refined in more detail.

The focus is on specifying what a system should do (the functional requirements) and on how

the system should function (the non-functional, or quality, requirements) [ISO/IEC 25010,

ISO/IEC 25030].

Figure 1 presents a UML class diagram where these entities are related to one another and to the
entities subsequently derived in analyzing the requirements to derive the Reference Architecture.
The analysis of requirements is explained in the next Section, with reference to the Figure 1.

Figure 1 Entities involved in the Reference Architecture derivation process and their relationships.

2.3 Functional architecture design

The analysis started from the Requirements (yellow box). Each requirement has been considered
individually, and the Functions (green box) required for its implementation have been derived. In the
context of the VRE4EIC project, this stage has been carried out by Task 3.1. In order to ease the
specification of functions, a set of Generalised Functions has also been derived, which are included
or specialised by functions, or which may be used as preconditions by functions. Generalise d
functions are reported in Table 2 in Appendix, along with their relations to functions.
During the execution of this phase, several design guidelines have been followed [RUP,
https://msdn.microsoft.com/en-us/library/ee658124.aspx]. A synthesis of the most important ones
is provided below.

https://msdn.microsoft.com/en-us/library/ee658124.aspx
https://msdn.microsoft.com/en-us/library/ee658124.aspx
https://msdn.microsoft.com/en-us/library/ee658124.aspx

VRE4EIC Page 11 of 125

D3.5 Final Architecture Design PU

● Separation of functions: Isolate from the requirements different functions with as little

overlap in functionality as possible. The important factor is minimization of interaction points

to achieve high cohesion and low coupling.

● Aggregation of functions: Identify possible generalization or composition relations between

the isolated functions to improve the organization and readability of the functional

architecture design.

● Learn from similar projects: analyze similar projects and documentation so to derive an high

conceptual-level architecture description focusing mainly on high view of

modules/components and communications and interactions between them.

● Reduce Responsibility: Assign to each component or module the responsibility for only a

specific functionality or aggregation of cohesive functionality.

● Minimal Knowledge: Each component or module should be unaware of the internal details of

other components.

The association between requirements and functions is documented in Tables 2.1 and 2.2 given in
Appendix. As the Figure also shows, this analysis of requirements into functions and components
connects to the Use Cases (turquoise box) and the High-level Use Cases (purple box) derived in
parallel by Task T2.2 and documented in deliverable D2.3. The connection is realized through
requirements, and has been used for the assessment of the Reference Architecture.
Overall, the approach has allowed maintaining the relationship between use cases, requirements and
components, thereby realizing the traceability of the Reference Architecture.

2.4 Architecture design

The Components that are required for the implementation of functions have finally been derived by
Task 3.1. These components provide the functional architectural design and are refined and further
decomposed into Sub-Components so that identified functional and nonfunctional requirements are
completely satisfied. During this activity the interfaces of the components have also been defined
and documented.
Also for carrying out this step several design guidelines have been followed [RUP,
https://msdn.microsoft.com/en-us/library/ee658124.aspx]. Here below a synthesis of the most
important ones is provided.

● Assess minimal knowledge: verify that each component does not rely on internal details of

other components. In particular check that each component method is called from at least

another object or component. Verify also that the method has information about how to

process the request and, if appropriate, how to route it to appropriate subcomponents or

other components.

● Avoid overloading of the functionality of a component: Avoid to overloaded components

with many functions and applying the single responsibility and separation of concerns

principles.

● Focus on communication between components: Understand the deployment scenarios and

determine if all components will run within the same process, or if communication across

physical or process boundaries must be supported—perhaps by implementing message-

based interfaces.

● Define a clear contract for components: Components and modules should define a contract

or interface specification that describes their usage and behavior clearly. The contract should

describe how other components can access the internal functionality of the component,

https://msdn.microsoft.com/en-us/library/ee658124.aspx
https://msdn.microsoft.com/en-us/library/ee658124.aspx
https://msdn.microsoft.com/en-us/library/ee658124.aspx

VRE4EIC Page 12 of 125

D3.5 Final Architecture Design PU

module, or function; and the behavior of that functionality in terms of preconditions,

postconditions, side effects, exceptions, performance characteristics, and other factors.

Components are detailed in Table 1, also given in the Appendix; Table 1 also documents the Sub-
Components derived for each component.

2.5 REFERENCES

[ISO/IEC 12207] International Organization for Standardization, “ISO/IEC/IEEE 12207:2008 - Systems
and software engineering -- Software life cycle processes,” ISO/IEC, Mar. 2008.
[ISO/IEC/IEEE 29148] International Organization for Standardization, “ISO/IEC /IEEE 29148:2011 -
Systems and software engineering — Life cycle processes — Requirements engineering,”
ISO/IEC/IEEE, Nov. 2011.
[SE] Ian Sommerville. Software Engineering. 9th Edition, Addison-Wesley 2011
[RUP] Rational Unified Process Best Practices for Software Development Teams, Rational Software
White Paper TP026B, Rev 11/01, July 2003
https://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/1251_bestpracti
ces_TP026B.pdf
[UP] Jacobson, I., Booch, G., Rumbaugh, J., Rumbaugh, J., & Booch, G. (1999). The unified software
development process (Vol. 1). Reading: Addison-Wesley.
[ISO/IEC 25010] International Organization for Standardization, “ISO/IEC 25010 - Systems and
software engineering — Systems and software Quality Requirements and Evaluation (SQuaRE) —
System and software quality models,” ISO/IEC, Mar. 2011.
[ISO/IEC 25030] International Organization for Standardization, “ISO/IEC 25030 - Software
engineering — Software product Quality Requirements and Evaluation (SQuaRE) — Quality
requirements,” ISO/IEC, June 2007.

https://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/1251_bestpractices_TP026B.pdf
https://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/1251_bestpractices_TP026B.pdf
https://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/1251_bestpractices_TP026B.pdf
https://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/1251_bestpractices_TP026B.pdf

VRE4EIC Page 13 of 125

D3.5 Final Architecture Design PU

3 The VRE4EIC Reference Architecture

At the general level, the VRE4EIC RA conforms to the multi-tiers view paradigm used in the design of
distributed information systems. Following this paradigm, we can individuate three logical tiers in
eVRE:

 The Application tier, which provides functionalities to manage the system, to operate on it,
and to expand it, by enabling administrators to plug new tools and services into the eVRE.

 The Interoperability tier, which deals with interoperability aspects by providing
functionalities for: i) enabling application components to discover, access and use eVRE
resources independently from their location, data model and interaction protocol; ii)
publishing eVRE functionalities via a Web Service API; and iii) enabling eVRE applications to
interact each other’s.

 The Resource Access tier, which implements functionalities that enable eVRE components to
interact with eRIs resources. It provides synchronous and asynchronous communication
facilities

Figure 2 Architectural tiers in a VRE

The Figure 2 depicts the logical tiers of eVRE and shows their placement in an ideal space between
the e-scientists that use the eVRE and the e-RIs that provide the basic resources to the eVRE.
According to this approach a system is composed by an integration infrastructure where a set of
software components can be deployed, these components implement the system functionalities and
potentially can be specified, developed and deployed independently of one another.
Based on these considerations and on the analysis of the requirements, for the basic integration
infrastructure of eVRE we have individuated a set of basic functionalities grouped into six conceptual
components:

 The eVRE management is implemented in the System Manager component. The System
Manager can be viewed as the component enabling Users to use the core functionalities of

VRE4EIC Page 14 of 125

D3.5 Final Architecture Design PU

the eVRE: access, create and manage resource descriptions, query the eVRE information
space, configure the eVRE, plug and deploy new tools in the eVRE and more.

 The Workflow Manager enables users to create, execute and store business processes and
scientific workflows.

 The Linked Data (LD) Manager is the component that uses the LOD (Linked Open Data)
paradigm, based on the RDF (Resource Description Framework) data model, to publish the
eVRE information space - i.e. the metadata concerning the eVRE and the e-RIs in a form
suitable for end-user browsing in a SM (Semantic Web)-enabled ecosystem.

 The Metadata Manager (MM) is the component responsible for storing and managing
resource catalogues, user profiles, provenance information, preservation metadata used by
all the components using extended entity-relational conceptual and object-relational logical
representation for efficiency.

 The Interoperability Manager provides functionalities to implement interactions with e-RIs
resources in a transparent way. It can be viewed as the interface of eVRE towards e-RIs. It
implements services and algorithms to enable eVRE to: communicate synchronously or
asynchronously with e-RIs resources, query the e-RIs catalogues and storages, map the data
models.

 The Authentication, Authorization, Accounting Infrastructure (AAAI) component is the
responsible for managing the security issues of the eVRE system. It provides user
authentication for the VRE and connected e-RIs, authorisation and accounting services, and
data encryption layers for components that are accessible over potentially insecure
networks.

In order to improve modularity in design and development of the architecture , the functionalities of
every conceptual component are partitioned, and each group of functionalities is assigned to a sub-
component, the Table 1 indicates for each conceptual components its subcomponents and their role
and main functionalities.

Table 1 VRE4EIC: sub components

Component Sub-components Description

AAAI Component Manages security, privacy and trust aspects
of the eVRE and its connections to the e-RIs

 Authentication Manages user authentication for the eVRE
and connected e-RIs (single sign on),
interfaces with external identity provider
services.

VRE4EIC Page 15 of 125

D3.5 Final Architecture Design PU

 Authorization Manages user authorisations (rolebased
access) based on (CERIF) metadata provided
by the Metadata Manager.

 Accounting Manages accounting and billing of resources
for which payment is required, based on
(CERIF) metadata provided by the Metadata
Manager.

 Encryption Provides encryption facilities.

Metadata
Manager (MM)

 Manages metadata about eVRE entities:
resource descriptions, user descriptions,
provenance information, preservation
metadata etc. (CERIF)

Interoperability
Manager (IM)

 Manages interactions with e-RIs

Query Manager (QM) Manages local and distributed queries,
collects result sets

Data Model Mapper
(DMM)

Manages data and query format conversion

Adapters Components that synchronously interact
with e-RIs resources

Message-Oriented
Middleware (MOM)

Manages asynchronous interactions with
eRIs resources using messaging protocols

eVRE Web Services
(eVRE WS)

Enable external applications to interact with
eVRE

Workflow
Manager (WM)

 Manages business processes and scientific
workflows, using the Metadata Manager for
storing information on workflows

VRE4EIC Page 16 of 125

D3.5 Final Architecture Design PU

Workflow
configurator

Provides functionalities to build/edit/store
execution plans, to control and monitor
processing flows execution.

Workflow executor Manages workflow execution, including
data staging

Workflow repository Provide functionalities to store and retrieve
workflows, workflows will be published
using LD manager

Linked Data
Manager (LDM)

 Manages the publication of information inas
Linked Open Data

SPARQL Endpoint Allows retrieving resources and services
published by eVRE as RDF documents

LD API The LD API maps CERIF metadata records in
RDF, implements metadata enrichment of
RDF records, i.e. adds to records typed links
to vocabularies and thesaurus entries,
Implements content negotiation

System Manager
(SM)

 Implements functionalities to install and
manage an eVRE, e.g. specify the resources,
specify the apps.

Node Manager (NM) Implements the functionalities to deploy,
manage and run an instance of eVRE on a
specific hardware

User Manager (UM) Manages user profiles and provides
collaboration/ communication
functionalities for users. It provides the
functionalities to add/update/remove user
profiles, to set up users permissions, to
manage users preferences, to configure
users working environments

VRE4EIC Page 17 of 125

D3.5 Final Architecture Design PU

Resource manager
(RM)

Manages resource information
implementing add/update/remove
operations on resource descriptions,
associating resources to security policies,
etc.

App Manager (AM) Provides functionalities to deploy and
manage applications that operate on eVRE
resources. It can be used also to embed
applications such as Wiki or forums etc.

3.1 VRE4EIC conceptual components

This Section describes the Conceptual components introduced in the previous section, for every
component is shown a UML Package Diagram containing the sub-components and one or more
component diagrams showing the interactions of the component with other eVRE components.
Interfaces and method signatures are reported in the section 10.3 of this Document.

3.2 The System Manager component

Figure 3 The System Manager

The System Manager is composed by 4 sub-components.

The User Manager is the component responsible for managing User Profiles, providing
Authentication mechanisms and enabling users to receive Notifications for events they have
subscribed. To perform its activities the User Manager interacts with:

 the Metadata Manager to store/retrieve/update User Profiles

 the AAAI to implement authentication, encryption, authorization and accounting tasks

VRE4EIC Page 18 of 125

D3.5 Final Architecture Design PU

 the AuthenticatorApp to implement login via external authenticator

Figure 4 The User Manager Component Diagram

Interface provided by User Manager component are described in details in Table 14 of the document
Annex.

The Resource Manager is the component responsible for managing information about resources
provided by RIs and other infrastructures, it communicates with remote resources via Adapters or
asynchronous messaging. The Resource Manager interacts with:

 Metadata Manager: to store, manage and retrieve information about resources
 AAAI component: to check permissions when interacting with external resources and to use

encryption functionalities if needed

 Model Mapper Component: to map data when interacting with external resources

 RI Resource Adapter: for synchronous interactions with the external resource provided by a
RI

 MOM component for asynchronous interactions with the external resource

VRE4EIC Page 19 of 125

D3.5 Final Architecture Design PU

Figure 5 The Resource Manager Component Diagram

The goal of the App Manager is to provide functionalities to enable external applications to be
embedded and used into the EVRE system. Generally speaking this means that such a component
should implement a set of facilities to manage:

1. the deployment of external applications in EVRE
2. the life-cycle of these applications (install/start/stop/update/uninstall)
3. the publication and the discovery of these applications

The idea is to build the App Manager as a lightweight, unobtrusive component that will interact with
external applications to track their lifecycle and their usage.
However, creating an App Manager able to automatically manage lifecycle and usage for every
possible external application embedded in the EVRE is not feasible: we’ll individuate a set of
standards and technologies and implement the App Manager for applications adopting those
standards , applications not implementing the selected technologies will be embedded by extending
the App manager with ad hoc sub components.

Figure 6 The App Manager Component Diagram

VRE4EIC Page 20 of 125

D3.5 Final Architecture Design PU

The Node Manager is responsible for managing the infrastructure, it implements the functionalities
to deploy, manage and run an instance of eVRE on a specific hardware.

Figure 7The Node Manager Component Diagram

3.3 The Workflow manager Component

The Workflow Manager is responsible for managing both Business and Scientific workflows1.In our
vision Scientific Workflows represent experiments conducted by scientists, therefore the WF
component will provide a workflow repository and interoperate with other workflow repositories to
facilitate the reuse and reproducibility of scientific experiments. Information about workflows are
stored in the Metadata Manager and will be published also as Linked Open Data via LD Manager.

Figure 8 The Workflow Manager

The Workflow Manager is composed by three subcomponents: the Workflow Configurator, the
Workflow Executor and the Workflow repository.
The Figure 9shows the overall component diagram for the Workflow Manager.

1 Bertram Ludäscher, Mathias Weske, Timothy McPhill ips, and Shawn Bowers. Scientific workflows: Business as

usual?,7th Intl. Conf. on Business Process Management (BPM), LNCS 5701, Ulm, Germany, 2009

VRE4EIC Page 21 of 125

D3.5 Final Architecture Design PU

Figure 9 The Workflow Manager component

Interfaces and method signatures are described in details in Table 19 and Table 20 of this document
Annex section. The functionalities of the Workflow Manager have been partitioned in three
categories: functionalities to create, update and manage workflows, functionalities to execute
workflow, and functionalities to manage the repository of the workflows. Therefore , we have defined
three sub components for the Workflow Manager.

The Workflow Configurator, is the sub component that provide functionalities to create and manage
workflows, it mainly interacts with the Metadata Manager and with The Query Manager to access
resource the component diagram is reported below.

VRE4EIC Page 22 of 125

D3.5 Final Architecture Design PU

Figure 10 Workflow Configurator Component Diagram

The Workflow Executor provides functionalities to execute workflows. To implement its
functionalitiesit may interact with many other components, the Component diagram is below

Figure 11Workflow Executor Component Diagram

The Workflow Repository manages the storage where workflow descriptions are stored and provides
functionalities to access these descriptions.

VRE4EIC Page 23 of 125

D3.5 Final Architecture Design PU

Figure 12 Workflow Repository Component Diagram

3.4 The Metadata Manager

The Metadata Manager is responsible for storing, manipulating and exposing metadata information
about various resources. It contains a set of catalogues and repositories and stores information with
respect to a set of predefined schemas.
The Metadata Manager component contains a set of subcomponents that deal with particular
functionalities: the Thesaurus, the Provenance Manager, the Preservation Manager etc.

VRE4EIC Page 24 of 125

D3.5 Final Architecture Design PU

Figure 13 The Metadata Manager Component Diagram

Interfaces and signatures of methods are described in section 10.3.5 of the Annex section.

3.5 The Interoperability Manager

This conceptual component provides functionalities to implement interactions with external
applications and frameworks. In particular it is used to interact with e-RIs, for instance to access their
resources . Essentially it must provide functionalities to enable eVRE to: communicate synchronously
or asynchronously with external agents. This is a key component: for instance, its functionalities will
be used by existing VREs in order to use the enhancing services provided by eVRE.

VRE4EIC Page 25 of 125

D3.5 Final Architecture Design PU

Figure 14 The Interoperability Manager

The Query Manager is the component responsible for managing the querying capabilities of the
infrastructure. This component receives as input a set of query requirements (in terms of keywords,
query preferences, dataset catalogues, etc.) and manages the entire process of

 preparing the query,
 splitting it into subqueries,

 submitting the subqueries into the proper systems,

 receiving the results, and

 integrating them in order to send them to the user as a unified set.

The QueryManager is a core component (a super-component) that aggregates and exposes the
functionalities of various subcomponents (i.e., Query Analyzer, Query Mediator, Query Inte grator,
Query Publisher, etc.).

VRE4EIC Page 26 of 125

D3.5 Final Architecture Design PU

Figure 15 The Query Manager Component Diagram

The Data Model Mapper is responsible for performing the required mappings and storing the
particular information (the mappings themselves) in its repository.

VRE4EIC Page 27 of 125

D3.5 Final Architecture Design PU

Figure 16 The Data Model Mapper Component Diagram

The Resource Adapter (or Adapter) indicates a set of components: in eVRE an Adapter is a software
module that wraps an external eRI resource. The Adapter acts as a middleware between an eVRE
component and an eRI resource, its role is to reduce dependency of eVRE from eRI resources.
Adapters are specific for e-RI resources and use synchronous standard protocols to interact with the
resource. The adapter could be deployed in the eVRE system or in the e-RI environment; it could also
be split in subcomponents. Interfaces of Adapters depend on the resource they wraps.
For asynchronous communications the Interoperability manager uses a MOM component, which
implements a message exchange protocol based on publish/subscribe paradigm.

Figure 17 The Message Oriented Middleware Component

The eVRE WS component implements the Web Service API for eVRE architecture. It is a crucial
component, it is used by external agents (applications) to access the functionalities of the eVRE. It
could be also used as service level integration middleware for expanding the eVRE with new
functionalities.

VRE4EIC Page 28 of 125

D3.5 Final Architecture Design PU

Figure 18 eVRE WS Component Diagram

3.6 The Linked Data Manager

The LD Manager is the component responsible for publishing resource descriptions with respect to
the principles of Linked Open Data. The process of publishing contains the transformation of
resources, the generation of (resolvable) URIs, their linking, etc.

Figure 19 The LD Manager

VRE4EIC Page 29 of 125

D3.5 Final Architecture Design PU

Figure 20 The LD Manager Component Diagram

3.7 The AAAI component

This component implements the authentication, authorisation, accounting and data encryption
backend services for the eVRE architecture. It interacts with external identity providers (IdP) to
enable single sign on across the various connected infrastructures. For any authenticated user, it
provides authorization services by using attributes provided by the external identity provider (if any).
These will be extended by using (CERIF) information by interfacing with the Metadata Manager
component.

Figure 21 The AAAI Component

VRE4EIC Page 30 of 125

D3.5 Final Architecture Design PU

Figure 22 The AAAI Component diagram

VRE4EIC Page 31 of 125

D3.5 Final Architecture Design PU

4 The VRE4EIC technical architecture

A Technical Architecture has been defined in order to implement a specific eVRE called Canonical
Reference Prototype (CRP) which complements the Reference Architecture, by selecting a set of
suitable implementation techniques and open-source components.
The key point in the derivation of the technical architecture, has been the VRE4EIC non-functional
requirements defined in the project proposal:

1. The developed Virtual Research Environments must be a dynamic system: it should reuse
and integrate existing VRE tools, services, standardized building blocks and workflows where
appropriate [vre4eic], and develop new innovative ones where needed .

2. The eVRE should be applicable to different multidisciplinary domains, i.e. it can be potentially
used in every research domain.

3. The eVRE functionalities should be exposed as services in a standardized way to enable
developers to easily use them to develop new applications.

4. The eVRE must provide innovative standard software services to be retro-fitted to existing
VREs to enhance them for their own domain purposes and for interoperability.

From the architectural point of view the above requirements mean that the eVRE system must be
easily expandable (by adding or replacing software components), highly modular (every architectural
component should be independently deployable) and capable of supporting te chnology
heterogeneity. We decided to adopt the Microservices approach for our technical architecture, since
the two key concepts of Microservices architecture [Newman] fits the above requirements:

 loose coupling: every service knows as little as it needs to about the components with which
it cooperates; this enables the microservices to be independently deployable on existing
VREs or replaceable in different domains

 high cohesion: components with related behavior stand together (i.e., related logic is kept in
one service); changing the technology used to implement a microservice does not affect
other microservices.

Figure 23 The eVRE Technical Architecture

The set of conceptual components functionalities, defined in the VRE4EIC RA, have been partitioned
according to the non-functional prerequisites, and the resulting subsets have been implemented as
microservices.

VRE4EIC Page 32 of 125

D3.5 Final Architecture Design PU

We adopted a number of design principles to define the microservices in our architecture:

 Use Asynchronous communications. We adopted an event-driven communication model, for
Microservices interactions. The eVRE Microservices interacts asynchronously by exchanging
messages. According to this model, a publisher generates a message whenever an event
occurs, containing information about the event that has fired the message. The message is
conferred to a third party, which will asynchronously deliver it to one or more consumers.
Upon receiving of a message, consumers react according to the type of message received.
The event-driven interaction model is not blocking: the microservice initiating the
communication does not wait for answer. Additionally, it is highly decoupled: a producer
does not have any way of knowing who is going to react to its messages. From an
architectural point of view an event-driven interaction model reduces communication
latency and improves scalability and flexibility of eVRE (Requirements 1, 2, 4 above): new
publishers or subscribers can be added to (or can be removed from) an event without the
other publishing/consumer microservices need to know it.

 Distributed processes management. When creating a Microservices-based architecture it is
important to choose how to deal with the problem of managing processes that stretch across
the boundary of individual services. The two possible approaches are: to have a central
service that guides such kind of processes (called Orchestration) or to implement the logic to
monitor and track processes in each involved microservice (called Choreography).
Considering our requirements, we decided to favour distribution and avoid a central point of
control. Our choice therefore went for the Choreography approach. A significant issue when
adopting Choreography approach is to implement a strategy to obtain the so-called
“eventual consistency2” [Newman] of the system when dealing with distributed processes.
We tried, as [Newman] suggests, to reduce the possibility of having distributed processes by
individuating at design time those operations that can involve multiple microservices and
trying to ‘keep’ the execution of these operations inside a single microservice. Checking the
UML Component diagram of eVRE, we noticed that a significant distributed process is the
management of resource descriptions (resource descriptions are metadata records
containing information about resources used by the eVRE). The Resource Manager is
responsible for this task; it may use the Metadata Manager as repository, the Data Model
Mapper for metadata conversion, Adapters to interact with remote services. The Resource
Manager provides functionalities to implement several crucial features of the eVRE system
(see Deliverable 2.1 for the list of features): PVF1 Data provenance information, CF3 Data
storage and preservation, IF1 Data identification, PF2 Metadata harvesting etc. For this
reason we decided to put the components cited above in a single microservice called the
Metadata service. For those processes that cannot be managed at design phase, a number
of technical solutions can be adopted to implement consistency, some of them really
sophisticated and we are investigating a framework able to deal with this issue in eVRE.

 Avoid service coupling because of component dependencies. This is a crucial issue in defining
a Microservices-based architecture. In a number of significant Use Cases individuated it is
required that eVRE interacts with external resources, for instance, when the Resource
Manager want to update catalogues contained in the Metadata Manager or the Workflow
Manager executes tasks involving remote datasets. These interactions are mediated by
Interoperability Manager (IM) via Adapters (for communication protocols) and Data Model
Mapper (for data conversion). Implementing these components in separate microservices
introduces a dependency that can result in an inefficient implementation of Requirement 4:

2 “Rather than ensuring that the system is in a consisten t state all the time, instead we can accept that the

system will get it at some point in the future” [Newman].

VRE4EIC Page 33 of 125

D3.5 Final Architecture Design PU

for instance when the microservice implementing the Workflow Manager or the Resource
Manager will be retro-fitted into an existing VRE we need to retrofit also the microservice
implementing the IM, thus deploying in the hosting VRE a number of software modules that
are possibly never used. Additionally, if a change is required in a subcomponent of the IM
because a new technology is required by a specific microservice (Requirement 1 could cause
this) we need to be sure that this change doesn’t have side effects affecting interactions with
other microservices. To avoid coupling between microservices we decided to embed the IM
sub-components used to interact with external resources into the microservices using them:
each microservice will have its own implementation so it can be easily retrofitted and
possible changes won’t affect other microservices.

 Efficiently manage integration with third-party software. Integration is a key feature of eVRE,

the system provides functionalities to integrate external agents at data level (using the
Metadata Manager functionalities), at application level (via eVRE WS and ad-hoc Adapters)
and it provides also asynchronous integration via MOM component. In the design phase, we
have assigned to the App Manager component the role of manager and monitor of life-
cycles of integrated applications; due to its crucial role we decided to create a spe cific
microservice for it, called App Service.

 Efficiently manage coexistence of different endpoints. An important advantage provided by

Microservices architectures is that different services can be installed on different nodes and
also that different version of the same service can coexist on the same node. To implement
this, we decided to partition the eVRE WS subcomponent: every microservice implements
those Web Services endpoints enabling to access its functionalities. Then the eVRE WS
component is the composition of all microservices WS endpoints.

The Table 2 lists the Microservices resulting from the application of the above principles to the
Reference Architecture. Each microservice is described by listing the main component(s) that it
implements and the auxiliary components that are part of it, as a consequence of the application of
the above principles.

Table 2 VRE4EIC Microservices

Microservice Main component(s) Auxiliary components

Node Service Node Manager, User Manager eVRE WS

App Service App Manager eVRE WS
MOM, Adapters (to avoid
service coupling, to implement
Choreography)

VRE4EIC Page 34 of 125

D3.5 Final Architecture Design PU

Metadata Service Metadata Manager eVRE WS
Resource Manager, Data Model
Mapper
MOM, Adapter (to avoid service
coupling and implement
Choreography)

LD Service LD manager eVRE WS

Workflow Service Workflow Manager eVRE WS
MOM, Adapter (to avoid service
coupling)

AAAI Service AAAI Manager eVRE WS

Query Service Query Manager eVRE WS
Data Model Mapper
MOM, Adapter (to avoid service
coupling and implement
Choreography)

4.1 Deriving the technical architecture

4.1.1 The GAP analysis

In order to identify the components of the Reference Architecture to be implemented by the project,
a Gap Analysis (GA) has been carried out. The main goal of the GA is to investigate the functionalities
provided by a number of VREs and to identify the gaps between such VREs and the eVRE defined in
VRE4EIC. The Gap Analysis [Deliverable 3.2] has derived the following ranking (in decreasing order of
priority):

1. AAAI - Authentication, Authorization, Accounting Infrastructure, MM - Metadata Manager
2. IM - Interoperability Manager, LDM - Linked Data Manager
3. QM - Query Manager, DMM - Data Model Mapper
4. AM - App Manager
5. WM - Workflow Manager
6. RM - Resource Manager, UM - User Manager

VRE4EIC Page 35 of 125

D3.5 Final Architecture Design PU

Figure 24 Development priorities

As shown in Figure 24 the two components with highest priority are implemented by two
microservices: the AAAI service and the Metadata service. The Node service, that implements the
functionalities to deploy, manage and run an instance of eVRE on a specific hardware, needs also to
be implemented in order to be able to create and manage an installation of the RA.
Due to the nature of Microservices architecture, microservices can be developed by independent
teams which only need to share the API contracts of what their services can do and how others can
use them. We set up three development teams, each one developing a Microservice.
The following sections describe the overall implementation choices, detailed information can be
found in the Deliverable 3.3 [D 3.3].

4.1.2 Node Service technological choices

The Node Service includes three components: the Node manager, the User Manager and the eVRE
WS.

The Node Manager implements the internal communication infrastructure, coordination and
configuration of the distributed services, and provides helper classes to other components of the
Node Service in order to ease the development of new functionalities.
Several functionalities have been developed from scratch in components whose libraries can be
easily extended and reused in generic eVRE services, other functionalities have been delegated to
components that make use of de facto standard libraries and services. Design goal for these
components has been the isolation of legacy code.
The legacy code included in the current implementation, consists of Apache Zookeeper [ZooKeeper]
and Apache ActiveMQ [ActiveMQ] open source software.

The User Manager has been developed from scratch, using Java technology. When a new user is
created in the eVRE system user manager stores the User Profile in its own repository and creates a
reference to the record, the reference is stored in the Metadata Manager. An important choice here

VRE4EIC Page 36 of 125

D3.5 Final Architecture Design PU

has been to introduce a synchronous interaction between this component and the AAAI: indeed the
User Manager needs to interact with the AAAI service in order to execute two crucial operations: i)
store credentials of users created in eVRE and ii) check credentials validity when a user logs in.
Both interactions could be implemented using the asynchronous communication model adopted in
our system, however, in order to improve security we decided to remove any mediation in these
operations and implement for them a synchronous encrypted communication: the User Manager
contacts the AAAI using an encrypted channel and waits until an answer has been received. The
Figure 25 shows the UML sequence diagram for the authentication operation.

Figure 25 Sequence Diagram for the Authentication Use Case

The eVRE WS is composed of a set of restful Web Services. As documentation for the eVRE WS, we
have created a publicly available application programming interface (OpenAPI) that provides
developers with programmatic access to the eVRE WS entry points; it can be found at the following
link:

http://v4e-lab.isti.cnr.it:8080/NodeService/swagger-ui.html#/

4.1.3 Metadata Service technological choices

The Metadata Manager implements all the methods that can be used for the metadata management
namely, import, export, query and update. Moreover, it contains the required methods for the
mapping and transformation of eVRE data provided by pilots into the CERIF data model expressed in
RDF. Taking into account that said data are expressed in RDF, it is necessary to use an RDF Triplestore
for the exploitation of the corresponding metadata catalogues.

http://v4e-lab.isti.cnr.it:8080/NodeService/swagger-ui.html#/
http://v4e-lab.isti.cnr.it:8080/NodeService/swagger-ui.html#/

VRE4EIC Page 37 of 125

D3.5 Final Architecture Design PU

The eVRE WS are documented via OpenAPI at the following link:
https://app.swaggerhub.com/apis/rousakis/ld-services/1.0.0

The Resource Manager is responsible for exposing various functionalities about the resources of the
research infrastructure. More specifically it provides the means to retrieve, update and remove
resources in the infrastructure. The component does not have any prerequisites in terms of
persistent storage, and only relies on other components and APIs within the infrastructure to carry
out the aforementioned tasks. To this end, it communicates (both synchronously and
asynchronously) with other components like the metadata manager for storing and retrieving
information about resources the AAAI component for checking permissions, etc. By design the
resource manager is not meant to interact with public users, therefore it will be delivered as an API,
that supports the corresponding functionalities as part of the metadata service component.

The Data Model Mapper has been built using the 3M set of tools that consist of 3M editor3, the web
application which is the GUI for the definition of the schema mappings, 3M manager4 that exploits an
eXist database and x3ml engine5 which is the services that executes the transformation of the data.
This set of tools, which are implemented mainly using JAVA, is available in GitHub, and the whole 3M
framework can be installed in a linux machine by using the Linux Installer that is currently published 6.

The graphical user interface is provided through the “VRE4EIC Metadata Portal”. This portal aims at
capturing all user requirements through a generic use case scenario by offering an easy to use UI
environment, allowing end users to take advantage of the Node and Metadata Service.

4.1.4 AAAI standards and technologies

The AAAI consists of three components, the identity provider, the access control unit and the policy
information point (PIP). The outlined design is standard practice. The interfaces between the
components are standardised.
Federated identity management is realised by three major protocols: OpenID, oauth2 and SAML. The
eVRE identity provider is implemented with an instance of Unity, it maintains its own user and user
profile database. In general though it will act as a broker to other identity providers, such as the
user’s affiliation EDUGain provider. The user (profile) metadata is maintained in a CERIF database.
The AAAI component, however, must maintain the mapping from the identity it has for a specific
user to the CERIF person identifier.
As described in a previous section (The Node Service implementation), we choose to implement a
synchronous communication: for user authentication the User Manager interacts with AAAI using a

3 https://github.com/isl/3MEditor
4 https://github.com/isl/Mapping-Memory-Manager
5 https://github.com/isl/x3ml
6 https://www.dropbox.com/s/566q2dhmbzbk662/3M_installer-1.1.tar.gz?dl=0

https://app.swaggerhub.com/apis/rousakis/ld-services/1.0.0

VRE4EIC Page 38 of 125

D3.5 Final Architecture Design PU

synchronous, encrypted channel. The token obtained by the User Client must be used in every
interaction with eVRE building blocks for instance when executing queries on the catalogue via the
Metadata Service.

VRE4EIC Page 39 of 125

D3.5 Final Architecture Design PU

5 The Canonical Reference Prototype

The following sections describe in details the overall approach followed to implement the Canonical
Reference Prototype, the technologies and standards adopted in each case and the main instructions
to install and run the building blocks7.

5.1 The choreography approach in eVRE: defining events and
messages

As described in Deliverable 3.3, the analysis of non-functional requirements has lead us to adopt
distribution of control avoiding a central point of control in eVRE. Our choice therefore went for the
Choreography approach [D 33].
To implement this approach, an event-driven communication model has been adopted for
interactions of building blocks. The first step for the implementation of this principle is the definition
of the set of events that occurs in a system. According to [RUSS] “Events represent full, complete,
self-describing and immutable Facts about the system”, and when creating a microservices
architecture it is important to clearly define “which events should a service process” and “which
events will a service emit”.

For every eVRE microservice (building block) we have individuated the set of events it can emit by
considering the list of the Generalized Functions (GF) extracted from the use cases [D 31], every
completed GF produce a specific event emitted by the building block that has executed it;
consequently, the building blocks that process the event will be those building blocks that could be
affected by the GF executed. Since we tried to implement the maintain the distributed process
management in a single service principle by design [D 33], most of the events don’t have any side

7 The complete installation guide for the e-VRE canonical prototype will be published on the VRE4EIC site and in

the deliverable of Work Package 7.

VRE4EIC Page 40 of 125

D3.5 Final Architecture Design PU

effect to other building blocks and are emitted just to be processed for log reasons. However there
are some special events that need to be processed by other building blocks: the most important of
this events is the event generated by Fun21: Agent Authentication that must be processed by every
other building blocks to guarantee the implementation of the Fun22: Continuous Access.
Events are communicated by microservices exchanging messages. To guarantee modularity, a
microservice should not require any additional context, or dependencies on the in-memory session
state to process a message representing an event; it must process the message and reacts
accordingly if needed, whiteout further information. The messages defined in eVRE will be described
in the section related to Node Service.
The event driven model in eVRE is implemented using asynchronous communication. An
asynchronous communication interaction is not blocking (the microservice initiating the
communication does not wait for answer) and is highly decoupled (a producer of a message does not
know who is going to react to its message). From an architectural point of view an event-driven
interaction model reduces communication latency and improves scalability and flexibility of eVRE
(see Requirements 1, 2, 4 in the section “The VRE4EIC technical architecture”): for instance, new
publishers or subscribers can be added to (or can be removed from) processing an event message
without other Microservices need to know it. In eVRE architecture the stream of events uses a
Communication Bus that is implemented as a set of asynchronous communication channels, one for
every category of events, managed by a specific component, the bus manager checks the
producers/consumers credentials to permit a building block to execute produce/consume
operations.

5.1.1 The development environment

Typically, geographically distributed teams whose goals are to design and develop a large
Information System need several kinds of collaborative tools to manage code versioning, to track
development activities and to distribute and deploy releases of the system.
We decided to use Git as Version Control System for the documents produced during the
architecture design, and for the source code produced during the implementation of eVRE.
The Jenkins framework (https://jenkins-ci.org) is used as Continuous Integration framework. Jenkins
is a server-based system running in Apache Tomcat (and other servlet containers) and it is installed
on a server hosted at ISTI-CNR:
http://v4e-hub.isti.cnr.it

The source code can be downloaded from the VRE4EIC repository defined on GitHub:
https://github.com/vre4eic.

https://github.com/vre4eic

VRE4EIC Page 41 of 125

D3.5 Final Architecture Design PU

Figure 26 Development Environment

To distribute the eVRE system we decided to adopt a container-based virtualization approach. We
are currently using Docker [Docker] as framework for this task.

5.2 The Node Service in the CRP

The Node Service implements all functionalities related to the User Profile management and eVRE
system administration. The UML component diagram is shown in section 3.2.

Figure 27 The Node Service: a technical view

The eVRE Node Service functionalities are implemented by 4 main software components:

 a GUI that enables the administrator to monitor the system and define the configuration
 the User Manager that manages user profiles and provide authentication facilities

 the Communication Bus that is used as communication infrastructure for the eVRE
Microservices interaction.

 the Node Manager which implements the functionalities to manage the eVRE system

VRE4EIC Page 42 of 125

D3.5 Final Architecture Design PU

5.2.1 The Node Manager

In a microservice architecture, services are typically distributed in a server infrastructure (created
using containers and VM images). In such an infrastructure microservices may scale up and down
based upon certain predefined conditions and the address of a microservice may not be known until
the service is deployed and ready to be used. The Node Manager implements the functionalities to
manage a distributed configuration service, a synchronization service, and a naming registry.

Essentially, the Node Manager role is to enable the set of autonomous eVRE microservices to act as a
coherent single system.

Figure 28 Partial state diagram of an eVRE building block life-cycle

Each eVRE building block, knows the address of the Node Service and during the start phase of its
life-cycle registers with the Node Manager component. During the registration, the building block:

1. provides information about itself, such as the endpoint address.
2. gets information it may need to execute its business logic: the address of other building

blocks, credentials to access remote resources, certificates to implement encrypted
communications etc

At runtime, a building block can interact with the Node Manager, for instance to find out the location
of other eVRE building blocks or to communicate significant changes in its state. When the building
block stops, it communicates with Node Manager to inform that it will be no longer available.
The Node Manager stores locally the information about the status of the eVRE system and
implements a policy for load balancing.
According to our architecture design, an eVRE system is made by the set of running building blocks
coordinated by a specific Node Manager.

5.2.2 The User Manager

The User Manager building block implements the management of User profiles containing
information about the users that registers on eVRE and wraps the authentication functionalities of
the AAAI building block.

VRE4EIC Page 43 of 125

D3.5 Final Architecture Design PU

Figure 29 The User Manager class

The functionalities of the User Manager building block are mainly used by external agents to
register/authenticate in the eVRE systems.

Figure 30 eVRE WS entry points for eVRE User Manager

VRE4EIC Page 44 of 125

D3.5 Final Architecture Design PU

5.2.3 The Communication bus

The Communication Bus is responsible for managing the asynchronous interactions implementing
the event driven model in eVRE. It acts as a Message Oriented Middleware (MOM) and provides to
eVRE building blocks functionalities to exchange messages.

Figure 31 Class Diagram of messages

Messages describe events that are relevant for the implementation of the business logic of the
system, the image above shows a subset of the messages implemented in the canonical prototype.
Following the MOM principles, the eVRE Communication Bus is used to create a number of
communication channels, each one containing a specific kind of messages.
When a building block starts, it gets information about the system configuration from the Node
Manager, including the list of active communication channels. It may subscribe to one or more
channels, and may also ask the Communication Bus to create some channels. During its life -cycle the
building block will be able to produce and consume (according to its permi ssions) messages on the
channels it has subscribed.

5.2.4 Implementation choices and adopted technologies for the Node Service

Figure 32adopted for the Node Service The main technologies

VRE4EIC Page 45 of 125

D3.5 Final Architecture Design PU

The eVRE Web Services component has been implemented in Java, the entry points of this
component are described and documented in details in the prototype site.
The same approach has been adopted to develop the User Manager component, a Java library has
been built using MongoDB as persistence layer.
To implement the Node Manager in the eVRE prototype the Apache ZooKeeper framework has been
used. Zookeeper provides functionalities to maintains status type information in memory and keeps
a copy of the state of the entire system and persists this information in local log files. In eVRE, every
building block creates a znode (a file that persists in memory on the Node Manager server). The
znode can be updated by building blocks that have permissions to do it, and any other building blocks
in the eVRE can register with the Node Manager to be informed of changes to that znode (i.e. to
“watch” a specific znode).
In order to help developers to implement the logic described for an eVRE building block we have
created an helper class (a sort of Node Manager client), called NodeLinker class. The current release
of this class is shown in Figure 33:

●
Figure 33 The NodeLinker class

The Node Linker class needs to be initialized with the address of the Node Manager and the
credentials, when instantiated it automatically sends to the Node Manager the address and the
name of the building block and downloads a number of properties that can be used by the building
block.
This class will be upgraded in the next release to include also the exchange of security certificates.
Finally, the Communication Bus in the eVRE prototype is based on Apache ActiveMQ, a framework
implementing MOM principles; it is used as communication layer by a Java API developed by VRE4EIC
team. In particular the code developed for Communication Bus add to ActiveMQ a security layer to
encrypt and digitally sign messages exchanged, details of this security layer have been reported in
the Deliverable 5.4 of the VRE4EIC project and will be also explained in the section related to AAAI
building block.

5.2.5 Source Code, documentation, set up

The java code is published on GitHub, and can be downloaded at the following URL:

 https://github.com/vre4eic/NodeService

The Node Service has been developed as a Java Maven project, the code is separate in two main
packages:

 eu.vre4eic.eVRE.nodeservice where there is the code that implements the functionalities of
the Node Service building block.

https://github.com/vre4eic/NodeService
https://github.com/vre4eic/NodeService

VRE4EIC Page 46 of 125

D3.5 Final Architecture Design PU

 eu.vre4eic.eVRE.core where we implement the code implementing functionalities commons
to all building blocks. In particular this package contains the Java classes implementing
messages and the classes implementing Node Manager clients. This development choice has
been taken in order to create a common API that can be used by all building blocks when
interacting each others or with the infrastructure. These API are distributed as Java archive
(jar)

The java classes are documented using Javadoc, the complete documentation can be read here:
http://v4e-lab.isti.cnr.it:8080/NodeService/doc/index.html
For the documentation of eVRE Web Services we adopted Swagger, a software framework that
enables developer to describe the API. The swagger documentation of the eVRE Web Services is
here:
 http://v4e-lab.isti.cnr.it:8080/NodeService/swagger-ui.html#
To set up the Node Service MongoDB and ActiveMQ are required in your environment.
At the moment this deliverable the only way to install a Node Service is to clone or download the
source code, then manually change property values in the file:
[your_dir]/NodeManager/src/main/resources/Settings.properties
In particular the MongoDB and ActiveMQ address and credentials must be set. When the file
Settings.properties has been updated a Web ARchive (WAR) must be created using maven and
deployed on a application container.

5.3 The eVRE AAAI implementation in the CRP

To implement the functionalities related to authorization/authentication in eVRE prototype we have
delegate to the User Manager the role of partial wrapper of the AAAI functionalities; this
implementation pattern enables eVRE prototype to be independent from the framework used to
implement the AAAI. In particular the User Manager wraps the interactions between the AAAI
framework and the external agents to execute two crucial operations: i) store credentials of user
profiles created in eVRE prototype and ii) check credentials validity when a user logs in the system.
As explained in Deliverable 3.3, in order to improve security, we decided to implement here a
synchronous communication: the User Manager interacts with AAAI using a synchronous, encrypted
channel. Essentially, when an external agent authenticates using the User Manager (Figure 34):

1. The client sends the credentials using a eVRE WS entry point
2. the User Manager forwards the credentials to AAAI and waits for answer
3. the AAAI verify that credentials are valid and returns a token
4. the User Manager creates an eVRE Authentication Message (explained in next sections of

this deliverable) that contains the token and sends this message asynchronously via the
Communication Bus

5. the User manager sends an answer to the client containing the token.

http://v4e-lab.isti.cnr.it:8080/NodeService/doc/index.html
http://v4e-lab.isti.cnr.it:8080/NodeService/doc/index.html
http://v4e-lab.isti.cnr.it:8080/NodeService/swagger-ui.html
http://v4e-lab.isti.cnr.it:8080/NodeService/swagger-ui.html

VRE4EIC Page 47 of 125

D3.5 Final Architecture Design PU

Figure 34 User authentication

The client will use the token in every interaction with eVRE building blocks for instance when
executing queries on the catalogue via the Metadata Service. The Figure 34 below shows the UML
sequence diagram describing this use case.

The main security/trust issue in this use case is that the Metadata Manager needs to know that the
token it receives asynchronously has been created by an eVRE building block that has the authority of
creating it, and that it has not been tampered with. The solution adopted to solve this issue has been
to sign and encrypt tokens and messages exchanged by eVRE building blocks. In the use case the
AAAI creates a token, encrypts it, and then returns it to the Node Service (as explained this happens
on a secure encrypted channel), the Node Service creates an AuthenticationMessage, signs it and
send the message asynchronously to eVRE building blocks. When the Metadata Service receives the
token: checks the signature, if it is a valid signature, decrypts the token and stores it locally.
Every eVRE building block signs messages before publishing them in the Communication Bus
channels and subscribers validate messages signature before consuming them.

To implement token encryptions and message signing, we have used the JSON Web Token (JWT)
standard8. In the eVRE prototype, JWT encryption and signature are based on shared private keys,
exchanged by building blocks via Node Manager, a more secure (and efficient) Public Key
Infrastructure will be implemented in next release.

5.3.1 Security and trust components

Some key issues discussed in Deliverable D5.3 and D5.4 around Security and Trust require solutions
that are either too domain- or platform-specific, or insufficiently standardized to be incorporated in
the reference architecture or the canonical reference prototype. As a use case in dealing with
security and trust issues in a digital humanities use case, we explored user interface components to
support a collaborative, explorative and interactive web front-end that can still produce transparent
and reproducible results on (privacy) sensitive data. These components are also used to gain practical
experience in connecting eVREs to other (inter)federated authorization infrastructures that currently

8 The JWT is “an open standard […] that defines a compact and self-contained way for securely transmitting

information between parties as a JSON object. This information can be verified and trusted because it is

digitally signed. JWTs can be signed using a secret (with the HMAC algorithm) or a public/private key pair using
RSA”. Info: https://jwt.io/introduction/

VRE4EIC Page 48 of 125

D3.5 Final Architecture Design PU

under development by the VRE4EIC project participating in a pilot9 managed by the Dutch National
Research and Education Network (NREN) organization SURFnet.

The VRE4EIC project participation in the pilot is to gain practical experiences with existing
international standards for federated authentication (e.g. identity management) and (inter)
federations such as eduGAIN, and to explore the landscape around federated authorization that is
currently developing in projects such as AARC2. We collaborate since May 2018 in a specific pilot by
SURFnet where several services are bundled in a virtual Science Collaboration Zone, and are
particularly interested in the federated attribute management functionality. It allows us to explore
the distributed management of user attributes stored at the Identity Provider, the federated
infrastructure and/or the eVRE AAAI service. The Pilot has just started and a first working prototype
has been demonstrated at an internal project meeting. We will fully report on this in deliverable D3.5

5.3.1.1 Collaborative executable notebook for transparent data science
To demonstrate trust-specific components a public demonstrator has been developed and made
available as a web service. This web service demonstrates the use of the SWISH datalab as a
prototype of a transparent and collaborative executable notebook user interface for e-RIs and eVREs
platforms. The demo contains all the code necessary to reproduce the tables, figures and other
computational results of an open access Web Science 2018 paper: “Using the Web of Data to Study
Gender Differences in Online Knowledge Sources: the Case of the European Parliament”. It uses an
collaborative notebook interfaces integrating the complete statistical analysis code (in R) for all
results presented in the paper, and the complete declarative data pre-processing and data modeling
code (in Prolog). This means that all computational steps leading to the resulted on in the paper are
open for inspection and review. In addition, it offers permalinks for all interactive re sults obtained
from the system, which means that all final and intermediary steps can be downloaded in the future,
even if the underlying code in the collaborative notebook is changed by the researcher or her
colleagues.

5.3.1.2 Technical details of the release
All software and code needed to reproduce the public web demonstrator has been archived for long
term storage at Zenodo under DOI https://doi.org/10.5281/zenodo.1232929. To project this code
against dependencies on operating-specific details and changes in third-party software, a self-

9 https://wiki.surfnet.nl/display/SCZ/Pilot+partners

https://wiki.surfnet.nl/display/SCZ/Pilot+partners

VRE4EIC Page 49 of 125

D3.5 Final Architecture Design PU

contained virtual machine image has been published for long term storage at
https://doi.org/10.5281/zenodo.1237673. All source code of the software is available on the VRE4EIC
GitHub account (https://github.com/vre4eic/websci2018-reproducibility-pack) and as docker
containers (https://hub.docker.com/u/vre4eic/).

5.3.2 The Two-Factor Authentication (2FA) CRP

The eVRE CRP User Manager implements a two-factor authentication (2FA) method i.e. a method
using a combination of two different factors to authenticate a user. The following sequence diagram
shows the building blocks involved to implement this functionality.

Figure 35 2FA Use Case Sequence Diagram

In eVRE prototype the channel used to communicate to the user the second factor is a Telegram
Channel, a detailed description of how a user can use the 2FA feature to authenticate on eVRE
prototype is in VRE4EIC Deliverable 3.3 [D 33], in particular in sections 6.1 and 5.4.
The component integrating the telegram Framework is called eVRE-TGBotAuthenticator, the source
code of this component is available here:
https://github.com/vre4eic/TelegramBots

5.4 Implementing The Metadata Manager in the CRP

It is the eVRE building block responsible for storing and managing resource catalogues. These
functionalities are provided by exploiting various components (i.e. MetadataManager,
DataModelMapper, etc.).

5.4.1 Implementation choices and technologies adopted

During the design phase of the project it has been decided that this building block should have used a
triple-store as repository. Initially, Blazegraph10 was installed as the Metadata Service repository.
However, during the eVRE prototype development, it was noticed that in many cases Blazegraph had
performance issues. In addition to that, Blazegraph’s development itself, seems to be inactive for the
last couple years. For those reasons it was decided to seek for an alternative triple-store, ending up

10 https://www.blazegraph.com

VRE4EIC Page 50 of 125

D3.5 Final Architecture Design PU

with adopting the Virtuoso Universal Server11. The Virtuoso Universal Server merges the capabilities
offered by a hybrid database engine and by a middleware that combines the functionality of a
traditional RDBMS, ORDBMS, RDFStore, virtual database, web application server and file server. It is
in fact a single threaded server process that supports multiple protocols.
The following standard Web and Internet protocols have been implemented in Virtuoso: HTTP,
HTTPs, WebDav, SOAP, UDDI, SPARQL and SPARUL. In addition, concerning the de velopment of
database-based applications and the integration of systems, Virtuoso has implemented a wide
variety of industry standard data access APIs, such as ODBC, JDBC, OLE DB and ADO .NET. Virtuoso is
made up of various server and client components, which enable the communication of a local or
remote Virtuoso server, such as the Conductor, which is Web based Database Administration User
Interface, and ISQL and ISQLO utilities. To this end, the Virtuoso Universal Server can be exploited to
produce a clustered-based system of RDFStores. In addition, there is a specific version of this server,
which can be deployed on the Amazon Cloud. Concerning the specific characteristics of Virtuoso that
are of interest for eVRE prototype, it can be highlighted that Virtuoso not only allows the
management of RDF (linked-)data but it enables their querying through the SPARQL language. The
same language (actually SPARUL) can be exploited for the updating of the linked-data.

5.4.2 Metadata Service: the source code

MetadataService has been developed as a JAVA maven project. It consists of different components,
therefore it is important to separate the development spaces for these components. All the different
components are placed under the eu.vre4eic.eVRE package. After that follows another package that
groups together the resources of a particular component (i.e. eu.vre4eic.eVRE.metadatamanager
contains all the resources of the corresponding component).
For each component we use different packages for grouping together resources that are used for a
particular reason. More specifically we use the following packages:

 api: for adding the interfaces of the components. These are the contractual interfaces that
are also visible from other components.

 impl: for adding the actual implementation (or different implementations) of the interfaces
that are found under the api package.

 model: for adding the structural components that are required (i.e. POJOs)

 exceptions: for adding the corresponding exceptions-related resources

 test: for adding the resources that are needed for testing the components

Furthermore for grouping the resources that are exploited throughout all the components we have
created a commons package (found under eu.vre4eic.eVRE.commons)

The Javadoc of the code developed can be found here:
http://139.91.183.70/apidocs/
The swagger documentation of the eVRE Web Services is here:

 https://app.swaggerhub.com/apis/rousakis/ld-services/1.0.0

5.5 The Workflow Service in the CRP

In the eVRE Reference Architecture, the Workflow Manager (WM) component is responsible for the
management of business processes and scientific workflows. To do this, the WM interacts with other

11 https://virtuoso.openlinksw.com/universal-server/

http://139.91.183.70/apidocs/
http://139.91.183.70/apidocs/
https://app.swaggerhub.com/apis/rousakis/ld-services/1.0.0
https://app.swaggerhub.com/apis/rousakis/ld-services/1.0.0

VRE4EIC Page 51 of 125

D3.5 Final Architecture Design PU

components, for instance it uses the Metadata Manager to get information to build workflows and to
store them, and the Query Manager to execute distributed queries. In the technical architecture, the
functionalities of the Workflow Manager are implemented by the Workflow Service. These
functionalities have been partitioned in three groups, each one implemented by a different sub-
component:

 The Workflow Configurator provides functionalities to build/edit/store workflows, and to
control and monitor their executions

 The Workflow Executor manages the execution of workflows, including data staging, it may
interact with the App Manager to execute tasks.

 The Workflow Repository provides functionalities to store and retrieve workflows
descriptions to/from the Metadata Manager, and to publish them using the LD Manager.

5.5.1 The Workflow Configurator

The Workflow Configurator implemented in the Canonical prototype access the VRE4EIC catalogue
to:

 search for resources that may be used in building a Workflow, for instance Web services
descriptions or references to external datasets, etc.

 save descriptions of web services, so these become eVRE resources and can be searched and
reused

The UML sequence diagram in Figure 36, describes the interactions between eVRE components in a
use case where the Workflow Configurator search for WADL descriptions of Web Services.

Figure 36 Search WADL resources Use Case

The Workflow Configurator interacts directly with the Metadata Manager (via the Metadata Service
eVRE WS, not shown in the diagram), and to do this it needs to know the reference (the URL) of the
Metadata Service. As explained in the section describing the Node Service, the Workflow Service
obtains the reference of the Metadata Service by querying the Node Manager during its start -up
phase. However, the reference to Metadata Service can be obtained also at runtime (the Node

VRE4EIC Page 52 of 125

D3.5 Final Architecture Design PU

Manager may implement a policy for load balancing when more Metadata Services are part of an
eVRE system).

5.5.2 The GUI, the Workflow Executor, the Workflow Repository

The Workflow Executor and the Workflow Repository components of the Workflow Service must
implement a number of user requirements, as described in Deliverable 3.1, in particular the
requirements: PRQ28 Data Processing Control, ORQ2 Processing Parallelization, ORQ4 Data
Compartmentalization [D 31]. The GUI should provide to users the possibilities of create workflows,
save them in the Workflow Repository and execute workflows in the Workflow Executor.
The effort to obtain a complete implementation of these components exceeds the resources
available in the project. For this reason, to implement the required functionalities we decided to
investigate the possibility to integrate an existing workflow engine in eVRE.
This starting point of our investigation has been a detailed analysis [HOLL] on state of art in the field
of workflow engines. The following table summarizes results of the work:

A number of tests has been made on the above frameworks and two possible choices have been
considered: Kepler and Apache Taverna. The main features of these two frameworks are compared
in Table 3.

Table 3 Workflow Engines features comparison

Apache Taverna Kepler

Domain-independent Domain-independent

GUI for workflow composition GUI for workflow composition

Simple Conceptual Unified Flow Language
(SCUFL2)

Uniform access to computational components
through actor model.

Enable to share and manipulate workflows
outside the editor.

Workflows are saved as XML files

VRE4EIC Page 53 of 125

D3.5 Final Architecture Design PU

Dataflow-oriented model of execution and
support loops

Many different models of computation are
possible, focus on actor-oriented

Support for RESTful web services & OGC
service consumption

Support for the use of Cloud in workflow
execution

Support for the use of Cloud in workflow execution

https://taverna.incubator.apache.org https://kepler-project.org/

LGPL license BSD License

We decided to use Apache Taverna for the prototype implementation. From the implementation
point of view the main reasons for this choice have been that it enables developers to implement the
web services and local services integration using Java related technologies; additionally it provides
monitoring tools that can be easily integrated in eVRE GUI, in particular the Taverna Workbench. The
Taverna Workbench, a tool that enable users to create, manage and store workflows, has been
designed and developed as a plug-in platform, this means that its functionalities can be easily
extended by developing and installing new plug-ins. A specific plugin for eVRE has been developed, it
enables Taverna Workbench to interact with eVRE, details of the eVRE plug-in are described in the
following sections.

5.5.3 Implementation choices

This section describes the implementation of the Workflow Service in terms of the three main actions
of the Fun15: Workflow Enactment general function that is implemented by the Workflow Service [D
31].

5.5.3.1 Workflow creation
The workflow is created using the Taverna Workbench which access the VRE4EIC catalogue to get
Web Services descriptions and use these descriptions to create workflows. The main responsible for
this activity in eVRE is the Workflow Configurator: it interacts with Metadata Manager to get the
Web Services descriptions, with AAAI to check authentication/authorization, with the Data Model
Mapper to implement the transformation of CERIF records into a format accepted by Taverna.
To enable the Taverna Workbench to interact with the eVRE we have developed a plug in module
that uses the eVRE WS provided by the Workflow Configurator. The plug-in is published and can be
installed by any user using Taverna Workbench (release 2.5).

https://taverna.incubator.apache.org/
https://taverna.incubator.apache.org/

VRE4EIC Page 54 of 125

D3.5 Final Architecture Design PU

Figure 37 Workflow Creation

5.5.3.2 Workflow storage

When a workflow is created:

 It is stored in the local Apache Taverna repository,
 A WSDL document describing the workflow is created by eVRE-Taverna plugin.

 The WSDL document is consumed by the Workflow Configurator of eVRE, and passed onto
the Data Model Mapper, which transforms it into a CERIF Service description. The so
obtained description is stored in the Metadata Manager (see Figure 38).

From this point on, the workflow can be discovered and invoked as any other service whose
description is stored in the eVRE Catalogue.

Figure 38 Workflow Storage

5.5.3.3 Workflow execution
The execution of a number of predefined workflows can be launched by the user from the eVRE GUI.
The GUI captures the input parameters of the workflows (via an HTML form, or similar) and demands
the execution to the App Manager of eVRE. The App Manager, in turn, will interact with a defined
Taverna server to execute the workflow. The result of the workflow is returned by the Taverna server
to the App Manager, and from the App Manager to the GUI.

VRE4EIC Page 55 of 125

D3.5 Final Architecture Design PU

Figure 39 Workflow Execution

5.5.4 Source code, documentation and set up

The java code of the Workflow Service is published on GitHub, and can be downloaded at the
following URL:

 https://github.com/vre4eic/WorkflowService

The Workflow Service has been developed as a Java Maven project, at the moment it only contains
the source code of the Workflow Configurator.
The documentation of eVRE Web Services is here:

 http://v4e-lab.isti.cnr.it:8080/WorkflowService/swagger-ui.html#/

The eVRE-Taverna plugin source code is available here:

https://github.com/vre4eic/eVRETaverna

The Readme.md file on GitHub repository contains instructions for the set-up of this building block
and of the eVRE Taverna plugin.

5.6 The App Service in CRP

The goal of this building block is to implement the functionalities of the App Manager conceptual
component: enable external applications to be embedded and used into the eVRE system (see
Deliverable 3.1 [D 31]). The App Manager is a crucial component for eVRE, it should be implemented
as a lightweight, unobtrusive software module that interacts with external applications to track their
lifecycle and their usage.
Creating a generic App Manager, able to automatically manage lifecycle and usage for every possible
external application embedded in the eVRE, is not feasible: a plan has been defined in the design
phase to consider the main standards for this purpose and to proceed implementing the App Service
for these standards: the Servlet level 3 specification has been adopted as first candidate.
However, the eVRE canonical prototype embeds two external software frameworks with a different
integration technologies: the Telegram framework for notifications and Two Factor Authentication
(2FA) using the Telegram API and the Taverna Workflow Engine, for workflow management GUI and
execution using the plug-in platform provided by Taverna Workbench.
As described in the correspondent sections we have created two specific components each one
running inside the eVRE system and interacting with eVRE building blocks using the Communication
Bus.

https://github.com/vre4eic/NodeService

VRE4EIC Page 56 of 125

D3.5 Final Architecture Design PU

The main role of the App Manager in eVRE prototype is to consume messages sent by these
components to keep a log of states transitions and to produce messages that are consumed by these
two components, each one reacting according to its business logic.

VRE4EIC Page 57 of 125

D3.5 Final Architecture Design PU

6 The VRE4EIC Metadata Portal

This section describes the implementation of a GUI for the VRE4EIC Reference Architecture. In
particular this GUI facilitates the exploration, discovery and management of the metadata describing
resources contained in the VRE4EIC catalogue. It incorporates a multitude of features on top of an
intuitive and user friendly environment, in order for both novice and expert users to execute
complex queries. The platform is agnostic to the underlying conceptual model, yet it can be
configured to take advantage of the main concepts designed.

6.1 Introduction to this section

The publishing of structured and semantically enriched data is changing traditional models of
conducting business and research. Modern science in particular is becoming more collaborative and
multidisciplinary, taking advantage of the plethora of data being produced by groups with diverse
scientific backgrounds. So-called Virtual Research Environments (VREs) aim to promote this scheme,
overcoming physical or semantic barriers, and facilitating researchers from diverse fields to exchange
data and resources, decoupling science from ICT.
For such an interoperability to be achieved, and considering the heterogeneity in scope, features and
technologies, various challenges are faced from the technical, semantic and legal standpoint. One
major goal is the generation of high-level ontologies with rich metadata that are easily explored by
researchers.

6.2 Targeted Objectives of the Design

This section describes the design, architecture and implementation of the VRE4EIC Metadata Portal,
a fully functional platform that facilitates the exploration, discovery and management of semantic
metadata for both novice and expert users who wish to execute complex queries. The platform,
provides an intuitive, user friendly environment that is highly configurable, making it appropriate for
various domains, still being agnostic of the underlying conceptual model.
The purpose of the VRE4EIC Metadata Portal is to provide a user-friendly environment to all VRE4EIC
users for the search, management and import of Metadata, contained in certain VREs and RIs. This is
achieved through the appropriate Graphical User Interface (GUI) through which end users can take
advantage of the Node and Metadata Services.
The portal does not only aim at offering (another) simple query interface for providing access to the
underlying metadata, hiding the complexity of writing expressive SPARQL queries. Although the
look'n'feel resembles similar query building systems with the goal of reducing the learning curve for
the novice user, the features incorporated are based on a thorough analysis of the requirements of
existing VREs and Research Infrastructures (RIs), offering a repertoire of solutions for various
beneficiaries. Overall, the goal is to support both

● Query writing for the expert, exploiting the capacity of the underlying conceptual models and
gathering best practices from similar systems,

● Discovery of metadata (exploratory search) for the novice user, to help researchers search
across domains and data that they are not familiar with, guiding them in the process of
creating a query.

VRE4EIC Page 58 of 125

D3.5 Final Architecture Design PU

6.3 Functional Model

The current implementation offers a metadata catalogue containing metadata from affiliated RIs. In
short, the main key features of the platform are described in the following paragraphs.
One key characteristic of the portal is that it dynamically executes sub-queries and presents partial
results on-the-fly, while the user builds the query. The goal is twofold. On the one hand, it helps
exploration by presenting results and allowing end users to limit the scope of the query and, on the
other hand, it prevents from executing meaningless queries that return no results. This is achieved by
transparently altering the options available during the query building process, eliminating choices
that can lead to an empty search space.
The platform offers a combination of different ways for searching relevant metadata within the same
query. It enables the user to compose queries using keyword search, entity-based search, time range-
queries, filter-based search and geo-spatial search through an interactive map.
Filter-based search occurs based on an intuitive interaction model and may involve conjunctive and
disjunctive nested queries. Options to limit the depth, the degree and the regular expression usage
(AND/OR), are available, simplifying the excessive use of nested filters.

Geo-spatial queries are constructed with the help of an interactive map, offering most of the
functionalities that one expects to find in similar systems, such as searching by toponyms or
geographical regions or selecting specific instances to be included in the query etc.

VRE4EIC Page 59 of 125

D3.5 Final Architecture Design PU

The platform also gives users the ability to store queries for later use. This is a handy option, enabling
the retrieval of complex queries that can be used as templates for constructing competency queries
with multiple filters or for making minor adaptations to complex exploration tasks.

After executing a query, the results can be examined through an internal resolver, allowing simple
navigation from any instance of the targeted entity to any of the instances of the related entities. In
that way, end users can even continue their discovery after the results are retrieved.

VRE4EIC Page 60 of 125

D3.5 Final Architecture Design PU

The platform provides a multi-factor authentication mechanism for granting access to the users. This
mechanism requires users to present two pieces of evidence, which are their regular credentials and
a code sent to the “Telegram Messenger” account, they possess. This compartment also provides
Role Based Access Control (RBAC), ensuring that users actions are regulated according their
knowledge background determined through their user roles.

The platform allows data import from a variety of RDF file formats on either existing or new defined
graphs. The process is as simple as a drag & drop and supports multiple file upload in a single step.

VRE4EIC Page 61 of 125

D3.5 Final Architecture Design PU

During this process, the system acquires any available user-profiling material and uses it as extra
provenance information to accompany the imported data. This provenance information is important
for knowing who has import what and where.

Finally the platform is configurable on many different levels, based on a specialized dashboard, in
order to enhance flexibility, robustness and simplicity. Configuration options are accessed directly
through the GUI (an administrator user role is required) and can significantly affect functionality,
system performance and the level of complexity. These parameters are mainly limitations,
regulations and option exceptions to be set on queries, the logical expressions used, or the available
entities.

VRE4EIC Page 62 of 125

D3.5 Final Architecture Design PU

Overall, a more detailed listing of functionalities supported by the platform is provided in Annex
section of this deliverable. The functionality covers aspects related to security, data presentation and
discovery, data import and export, system configuration and administration and system’s robustness
and fault tolerance.

6.4 Architecture of the VRE4EIC Metadata Portal GUI

The GUI is implemented by several sub-components which interact with external components
(mainly using restful web services). A high-level diagram of the platform is presented in Figure 40

Figure 40 Portal GUI Platform

In the next sections, each of the components, constituting the portal, are described in more details
along with their responsibilities and main functionality.

6.4.1 Front End

The front end is mainly responsible for facilitating human-computer interaction and provides the
required features that constitute the GUI intuitive and usable. However, its functionality is further
expanded, since it is also responsible for implementing the required logic for executing users’ actions
and deciding the proper services to be called. Moreover, this component is responsible for properly
handling errors and informing end-users about them when they occur. Finally, tasks related with
users’ login or registration are directly handled by this component. The front end is based on the
Model View Controller (MVC)12 design, where the user interface layer is isolated from the
application’s logic. The available controllers receive http requests and dynamically build the required
models for the data view. This view then uses the data prepared by the controller to generate a final
presentable response.

12 https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

VRE4EIC Page 63 of 125

D3.5 Final Architecture Design PU

The logic of the front-end regarding the dynamic construction of queries, relies on the general
assumption that the user is looking for a “target entity” which is “related” to one or more “entities”.
That assumption is further expanded so that each of the “entities” can be “related” to other
“entities”, forming in this way a tree model on the fly, describing the constructed query. The picture
below shows the tree model in a generic way.

Tree model describing the general concept under which relies the logic of dynamically constructing
queries

All nodes under the root node are actual filters applied on target entity. The same applies all node
under any node parent. Any nodes in the same level that have the same parent and are more than
one are accompanied by a regular expression (OR/AND) that defines the way filters are applied
together.

6.4.2 Back End

The back end is responsible for serving all front end needs by executing the required functions and
calling the appropriate web services. The back end mainly consists of controllers, internal back-end
services (not to be confused with web services) and an Intermediate database.
Each controller is responsible for calling the appropriate services or external web-services, which
combined together can fulfill a task. Moreover, the responsibility of the controllers is to deliver the
required output at the front end, or the appropriate error message, if some failure occurs. This sub-

VRE4EIC Page 64 of 125

D3.5 Final Architecture Design PU

component is responsible for checking the token’s validity in any interaction with the front-end and
acts respectively. On the other hand, services are responsible for accomplishing more specific tasks
that usually aim on single targets. These services interact with web services to achieve their goal. The
involved web services are the node services, related with user’s profile and security, and the
metadata services, related to query execution and metadata import / export, which are explained
next. Since the platform interacts with users and is flexible enough to operate in a generic form,
configuration options and users’ structured queries, have to be stored to some place different than
the Triple Store Repository itself, since this is only used for storing metadata. As such, an
intermediate database is used for serving this purpose.

6.5 Interactions of the VRE4EIC Metadata Portal with the eVRE
building blocks

6.5.1 Node Service

The VRE4EIC Metadata Portal interacts with the Node Service for:
● User authentication at login;
● User registration;
● Retrieving user’s profile information;
● Retrieving User roles for applying RBAC;

It is important to mention that the portal itself does not hold any personal information related to
end-users, since this is the responsibility of the Node Services to fulfill in some remote and secure
repository.

6.5.2 Metadata Service

The Metadata Service is the building block, responsible for providing services related to metadata
management. These services can be further classified into Query Services and Import/Export
Services. Query services execute queries on the data stored into the Triple Store Repository and
deliver the output back to the requester. Import services can insert data formed in a variety of
formats into the Triple Store Repository. Finally, Export Services can extract data specified from the
Triple Store repository and deliver it back to the requester in a variety of formats. The Metadata
Restful API are documented using Swagger an documents can be accessed using this link:
 https://app.swaggerhub.com/apis/rousakis/ld-services/1.0.0.
The set of specific eVRE WS entry points used in the VRE4EIC Portal appear in Figure 41.

Figure 41 eVRE WS Entry Points for the Metadata Portal

https://app.swaggerhub.com/apis/rousakis/ld-services/1.0.0

VRE4EIC Page 65 of 125

D3.5 Final Architecture Design PU

6.6 Technologies used in implementing the VRE4EIC Metadata

Portal

A powerful combination of technologies has been used to implement the VRE4EIC Graphical User
Interface

● Spring Boot (a Web Application Using Spring MVC)
● AngularJS (a structural framework for dynamic web apps based on HTML and JavaScript)
● Bootstrap-UI & Material Design (UI component frameworks)

All the components can be executed from the command line as standalone Maven applications, since
they include an embedded server container (Jetty by default, however Tomcat can also be
embedded)

● No prior installed software is required (except of the JVM);
● No prior configuration is needed;
● Independent, portable and easy to be deployed

VRE4EIC Page 66 of 125

D3.5 Final Architecture Design PU

7 Validating the VRE4EIC Reference Architecture:
the EPOS and ENVRIplus enhanced VREs

7.1 The enhanced EPOS VRE

EPOS, the European Plate Observing System, is a long-term plan to facilitate integrated use of data,
data products, and facilities from distributed research infrastructures for solid Earth science in
Europe. EPOS will bring together Earth scientists, national research infrastructures, ICT (Information
& Communication Technology) experts, decision makers, and public to develop new concepts and
tools for accurate, durable, and sustainable answers to societal questions concerning geo-hazards
and those geodynamic phenomena (including geo-resources) relevant to the environment and
human welfare.
EPOS vision is that the integration of the existing national and trans-national research infrastructures
will increase access and use of the multidisciplinary data recorded by the solid Earth monitoring
networks, acquired in laboratory experiments and/or produced by computational simulations. The
establishment of EPOS will foster worldwide interoperability in the Earth sciences and services to a
broad community of users.

The collaboration and interaction between EPOS and VRE4EIC was carried along two main
dimension: EPOS integration and EPOS enhancements.
In the first one, EPOS contributed to make its assets (metadata, datasets etc) available in an
integrated way through VRE4EIC system prototype. In the second one, EPOS took advantage of
existing building blocks from VRE4EIC that implemented missing functionalities in EPOS. This
interaction hence demonstrated both the feasibility of the VRE4EIC concept, that aims at integrating
heterogeneous resources in a homogenous way, and the added value of the architecture and
developments carried on in VRE4EIC, that can contribute to the enhancements (i.e. expanding
functionalities) of existing VREs and Research Infrastructures.

7.1.1 EPOS Integration with VRE4IC: workflows

In the framework of integrating EPOS resources in VRE4EIC, EPOS provided access to to so called
“scientific workflows”. The Figure 42 shows how the integration was done:

Figure 42 EPOS-VRE4EIC integration

VRE4EIC Page 67 of 125

D3.5 Final Architecture Design PU

The three boxes represent respectively EPOS system, VRE4EIC system and the “user system” (e.g.
laptop).
Initially an EPOS user, but might be any user, launch on his/her own laptop the TAVERNA workbench
application in order to execute some scientific workflow (step 1 in the picture). In order to access to
workflows provided by the VRE4EIC system, the user install a plugin that automatically connects to
the WF configurator component (in the VRE4EIC domain) and fetches web services descriptions
stored ito VRE4EIC metadata manager (step 2 and step 3 in the picture). The metadata manager, in
turn, access to webservices description from EPOS workflows catalogue (whether runtime or by
ingesting information in advance).
This ensures that any non-skilled user can take advantage of workflows and webservices from EPOS
domain (but potentially from any domain) just by installing a plugin on its workflow application (in
this case taverna workbench).

7.1.2 EPOS architecture enhancement

First enhancement in EPOS was in terms of system architectural paradigms and functionalities.
Leveraging on the studies, tests and experience from WP3, EPOS technical team started a fruitful
collaboration. Both systems start from a common baseline, which can be summarised with the a)
adoption of the same architectural paradigm (Microservices), b) adoption of the same
metadataoriented approach, through the use of a CERIF based metadata catalogue.
EPOS technical staff and VRE4EIC WP3 had regular meetings and discussion, both remotely and face
to face (at the Project’s meetings) where the two architectures were compared.
As a result, EPOS architecture was enhanced by moving from a microservice centralized
management, to a microservice choreography approach, both described in Deliverable 3.4
A snapshot of the EPOS Architecture follows.

7.1.3 EPOS functionality enhancement

A second enhancement of EPOS was in terms of additional functionalities provided by VRE4EIC.
As mentioned, the main EPOS system, called Integrated Core Services Central hub, use a microservice
approach. It includes a central queuing system and several components that performs atomic tasks
and are connected to the queuing system. Examples of microservices are reported in the above in
the diagram: the queueing system, the connector to Thematic Core Services and the metadata
catalogue and others.
As evident from the diagram, some components implementing functionalities as authorisation are
missing. They are however implemented by components or “building blocks” developed in the
context of VRE4EIC. Building blocks are basically the components of the VRE4EIC refere nce
architecture. Technically each building block is a microservice implementing a major component of
the Reference Architecture, so it can be easily “plugged” into other architectures.

VRE4EIC Page 68 of 125

D3.5 Final Architecture Design PU

In this case, the building block to consider is the «AAAI service». AAAI stands for Authentication,
Authorization, Accounting Infrastructure, that is to say a system to manage user secure access to a
system with authorization. The main characteristic of this service is that it integrates different
authentication mechanisms in one single system, thus providing a user a single point of access to
resources. In practice, it means that independently from his or her account credentials, user will type
them in one single form. Integrating it into an existing Research Infrastructure like EPOS, means
avoiding the effort of integrating many different authentication services into one Research
Infrastructure, with all related technical and security issues.
EPOS tested the module, and the results were encouraging, as it enabled EPOS users with existing
credentials to log in to EPOS in an easy way, without jumping from a website to another. It indeed
integrated several heterogeneous Identity Providers, like Edugain, Google, but potentially – what we
aim at doing in the future – also other providers, both academic and generic, for instance ORCID,
GitHub, Facebook.

The Figure 43 shows in terms of functional blocks how the enhancement was achieved.

Figure 43 EPOS Functionality Enhancements

Green box represent the EPOS system, while the red box represents the VRE4EIC system prototype.
Users access to the EPOS GUI, and when they want to perform login they are redirected (step 1) to
the VRE4EIC node services. This service in turn register/login the user by means of the VRE4EIC AAAI
service (step 2). Response is enclosed into a token that can be used from the GUI (step 3). Such token
will then be used by the GUI for communicating with the EPOS WEB APIs. Anytime the GUI makes a
call the the EPOS WEB APIs, indeed, the token goes through a proxy that checks its validity by
connecting to the VRE4EIC service (steps 4-5). If the token is recognised as valid, then the request
proceeds (step 6) and WEB APIs respond with a data pyload that is then rendered or presented by
the GUI to the user (steps 7-8).
These components interoperate in real time, thus providing the functionality of logging in to the
EPOS Web Interface by using the services provided externally by VRE4EIC. All this complexity is
hidden to the user, who just insert login and password in one simple login form.
A working demo of this integration can be found here:

http://nodedev.bgs.ac.uk/epos/epos-gui/otherAAIversion/search

Clicking on the “login” top right button, user can log in and is automatically recognised by the system.

7.2 Enhancement in ENVRI plus VRE

The ENVRI community represents a cluster of environmental and earth science research
infrastructures, and thus represents a vital forum in which to promote the eVRE solutions developed

http://nodedev.bgs.ac.uk/epos/epos-gui/otherAAIversion/search
http://nodedev.bgs.ac.uk/epos/epos-gui/otherAAIversion/search

VRE4EIC Page 69 of 125

D3.5 Final Architecture Design PU

in the project. The Data for Science theme within the ENVRIplus project is concerned with providing
common technical solutions and recommendations to many of the problems shared by the ENVRI
community, for example with regard to metadata cataloguing, provenance, identification and
citation of persistent resources and data processing. Thus the eVRE architecture and building blocks
solutions have both been exploited to the ENVRIplus community as part of the ENVRI service
portfolio of technologies, standards and recommendations. More specifically, eVRE developments
have been applied to the problems of enhancing i) cross-RI data and service discovery, ii) cross-RI
workflow composition, and iii) cross infrastructure workflow execution and provenance.

7.2.1 Community catalogue for cross-RI data and services

In the ENVRIplus community, data and other digital assets are catalogued using different metadata
standards (e.g., CKAN, ISO 19139 and Dublin Core) and using different technical solutions to serve
metadata (e.g., B2FIND, GeoNetwork and Get-IT). Such diversity makes cross-RI data and service
discovery very difficult.

To address this, the eVRE solution has been used in ENVRIplus to build a contextual rich community
catalogue for multiple research infrastructures in ENVRIplus. The CERIF standard was included in the
ENVRIplus catalogue recommendation together with CKAN (used by EUDAT’s B2FIND service). More
specifically, the following two actions were taken to address the short term and long term challenges
respectively.

7.2.1.1 Short term: manually setting up a CERIF-based data catalogue
In the short term, the CERIF database and catalogue software stack already implemented by EPOS
(which is also a member of the ENVRI community) have been directly deployed in ENVRIplus by
ENVRIplus project partner IFREMER. By setting the ENVRIplus instance, a small set of records from
SeaDataNet (concerned with the marine domain), ICOS (concerned with the atmospheric domain)
and ANAEE (concerned with ecosystems and biodiversity) are being manually ingested. Figure
44shows the basic scenario:

Figure 44: The CERIF catalogue solution provided by EPOS will be deployed more broadly in ENVRIplus.

7.2.1.2 Long term: automatically harvesting CERIF records from diverse ENVRI RI catalogues
In parallel to (a), an automated approach is also being prototyped by the University of Amsterdam
within ENVRIplus. The basic idea is to take advantage of the metadata manager and metadata
mappings developed in WP4 using the 3M environment, and to build upon that development by
automating the manual pipeline currently used by FORTH to dynamically transform metadata records
from ENVRI RI catalogues into a single CERIF database. Figure 45 shows the basic scenario:

VRE4EIC Page 70 of 125

D3.5 Final Architecture Design PU

Figure 45: An automated pipeline for harvesting ENVRI RI catalogues into a single CERIF catalogue.

 Based on the automated pipeline, we have developed as a service --named Metadata Catalogue
Mapper (MetaCatMap)-- that implements a flexible metadata mapping pipeline using different
metadata schemes to provide cross-RI metadata search and discovery.
Metadata Catalogue Mapper (MetaCatMap) consists of the following components:

 RESTCat: This is the REST frontend API that takes requests from users to perform the
conversion from one standard to another. The parameters or the request are the source
metadata catalogue URL and the target mapping standard

 CatTask: This component extracts individual entries from the source metadata catalogue and
creates a mapping task and adds it in a task queue

 CatMap: This component pulls a mapping task from the task queue, and queries the X3ML
mapping framework for the appropriate mapping that matches the source and target
standard

 X3ML Engine: This component performs the actual transformation of an entry from the
source standard to the target standard

Figure 46 shows the overall architecture.

VRE4EIC Page 71 of 125

D3.5 Final Architecture Design PU

Figure 46

7.2.2 Architecture of the Metadata Catalogue Mapper (MetaCatMap)

Following the construction of the joint catalogue based on CERIF, the semantic search capabili ties
being developed as part of the metadata service building block of the eVRE will be in turn applied in
ENVRIplus to enhance data and service discovery based on vocabulary linking activities now being
conducted in ENVRIplus between RIs with similar but currently distinct vocabularies for describing
environmental phenomena and observations. Since the metadata from ENVRIplus catalogues will be
ingested and mapped onto CERIF, it is possible to exploit the semantic classification layer of CERIF to
take advantage of the linked vocabularies produced by ENVRIplus and so provide enhanced semantic
search based on the metadata service developed by FORTH, as shown in Figure 47

Figure 47 Using the semantic search support provided by the eVRE to enhance cross-RI data and service discovery.

7.2.3 Cross-RI workflow composition

Using the semantic search capabilities of the metadata service and the workflow manager building
block provided by the eVRE, the ENVRIplus community is also able to enhance their cross-RI
workflow composition capabilities. Figure 48 shows the basic scenario:

VRE4EIC Page 72 of 125

D3.5 Final Architecture Design PU

Figure 48 The workflow composition using eVRE building blocks

The process can be broken down into six distinct steps:

a. Ingesting metadata from data and service catalogues (in ENVRIplus) into a CERIF catalogue,
as described earlier.

b. Semantically searching data and services using the eVRE metadata service with semantic
search capabilities, likewise as described earlier.

c. The workflow environment (in this case we use Taverna), will load the pre -selected services
(identified in step b) into its own local service catalogue.

d. Composing an executable workflow using Taverna.
e. Executing the workflow using the Taverna engine.
f. Storing the metadata of successful workflow compositions or executions back into the joint

CERIF catalogue.
During the integration, the ENVRIplus team specifically compared two scenarios to show the added
value of using semantic search, as shown in Figure 49:

Figure 49 Loading the RI service catalogue into Taverna directly (scenario a, indicated by the pink line via a UvA-developed

plugin) or via CERIF and semantic search (scenario b, provided by the CERIF pipeline).

In the context of a single RI, scenario (a) can provide an effective, quick solution. In the case of
workflows composed using services provided by multiple RIs however, it is judged that scenario (b)
will provide better selection on data and services.

7.2.4 Cross-infrastructure workflow execution and provenance

Finally, the eVRE building blocks have also been used to enhance workflow execution and
provenance collection across multiple e-infrastructures. Figure 50 shows the basic scenario:

VRE4EIC Page 73 of 125

D3.5 Final Architecture Design PU

Figure 50 Cross-Infrastructure workflow execution and provenance.

During the integration phase, the workflow manager (the eVRE building block) will be used to
perform execution, with services produced by the UvA team together with the ENVRIplus
provenance working group used to harmonize the distributed provenance information generated by
the different distributed e-infrastructures at different levels on the technology stack, including
workflow level, service level and infrastructure logs. A CERIF record will be created to link the
different contexts of provenance data from different sources.

VRE4EIC Page 74 of 125

D3.5 Final Architecture Design PU

8 Conclusions

VRE4EIC has successfully developed a reference architecture which has been demonstrated in the
form of a canonical reference prototype and of which components have been used in EPOS and
ENVRIplus. The architecture has met the original VRE4EIC objectives in providing a reference
architecture for future VREs and components useful to existing VREs/RIs.

VRE4EIC Page 75 of 125

D3.5 Final Architecture Design PU

9 References

[vre4eic] VRE4EIC project proposal, section: 1.4.2 Innovation potential and advances beyond the
state-of-the art

[Newman] S. Newman, Building Microservices, O'Reilly Media. February 2015

[D33] https://www.vre4eic.eu/images/Public_deliverables/D3.3_Building_Blocks.pdf

[D34] https://www.vre4eic.eu/images/Public_deliverables/D3.4_Enhanced_VREs.pdf

[D53]https://www.vre4eic.eu/images/Public_deliverables/D5.3_A_strategy_for_the_VRE4EIC_projec
t_to_handle_security_privacy_and_trust_issues_V2.pdf

[D54]
https://www.vre4eic.eu/images/Public_deliverables/D5.4_Strategies_for_the_VRE_end_users_to_h
andle_security_privacy_and_trust_issues-second_version.pdf

[ZooKeeper] P. Hunt, M. Konar, E Junqueira, B. Reed, "Zookeeper: Wait-free coordination for
internet-scale systems", USENIX ATC, vol. 10, 2010.

[ActiveMQ] Apache Software Foundation, “Apache ActiveMQ,” http://activemq.apache.org/ , Bruce
Snyder, Dejan Bosanac and Rob Davies, “ActiveMQ in Action” 2011 by Published by Manning.

[HOLL] Holl S. Automated Optimization Methods for Scientific Workflows in e-Science Infrastructures.
Forschungszentrum Jülich; 2014.

https://www.vre4eic.eu/images/Public_deliverables/D3.3_Building_Blocks.pdf
https://www.vre4eic.eu/images/Public_deliverables/D3.3_Building_Blocks.pdf
https://www.vre4eic.eu/images/Public_deliverables/D3.3_Building_Blocks.pdf

VRE4EIC Page 76 of 125

D3.5 Final Architecture Design PU

10 Annexes

10.1Generalised functions

The tables in this subsection clarify the connection between the different viewpoints already
described in the document. Specifically, as identified in the use cases, there are a number of domain-
independent, general tasks that a user of a VRE typically performs, such as querying for metadata,
asserting information in the catalogues, and others. These are called Generalized Functions. Such
Generalized Functions are usually composed of elementary Functions, e.g., cross-searching, which
are structured based on specific series of steps. The elementary Functions have a direct connection
with the Requirements, as they have been developed, in order to satisfy one or more of them. Notice
that even elementary Functions can be further decomposed into other functions, according to the
level of abstraction needed.

Error! Reference source not found. connects the Generalized Functions extracted from the use cases
with the elementary Functions and the steps involved.
Then, Table 5 and Table 6 below elaborate on the elementary Functions, associating them with the
relevant requirements of each. In addition, they correlate these functions with the corresponding
components of the architecture which implements them.

Table 4 Generalized Functions

Generalized

Functions
Pre-condition Steps Involved Included/

Specialized by Fun

GF1:

Querying

Fun21: Agent

Authentication

(the agent has

been

succesfully

authenticated)

The agent accesses the VRE Search UI (in case of a human user) or the

corresponding Search API (in case of software entity)
The agent prepares a query to be submitted, involving

○ keywords, and/or

○ topic filtering, and/or
○ target (internal or external) sources, and/or
○ target datasets, and/or

○ other filtering criteria
During the query preparation process, the system offers spell checking
and recommendations (Thesaurus - MM)

The query is submitted to the QueryManager by the agent.
The Query Manager receives a query and starts parsing it. Specifically:

○ The Query Manager (QM) examines the sources

○ The QueryManager breaks the query into subqueries
○ The QueryManager submits the queries (to MetadataManager

and LD Manager)

The QueryManager retrieves all results
○ The QM merges the results
○ The QM returns the integrated results

The agent browses over the results (IDs of resources) (see GF2:
Dataset/Metadata Exploration)

Fun1:Simple Search

Fun2:Cross Search

Fun3: Advanced Search

(the next ones are neither primitive nor

abstract; they are compound functions)

Fun11: Data Collection

Fun12: Data Sampling

Fun19: Data Discovery

GF2:

Dataset/

Metadata

Exploration

GF1: Querying The agent has a list with IDs of resources.
The UI shows the results to the user (only for human users)

○ The UI creates the pages with the results
○ The UI shows some information about the query evaluation (might

require communicating with other components for retrieving such

information)
The user selects to browse for more information about a specific result
The above request is submitted to QueryManager, along with the

selected source (from GF1)
The QueryManager inspects the given sources and submits the
corresponding requests to MetadataManager and LDManager

Fun4:Dataset Viewing

Fun5: Dataset Preselection

Fun6: Dataset Customization

(the next ones are neither primitive nor

abstract; they are compound functions)

VRE4EIC Page 78 of 125

D3.5 Final Architecture Design PU

Generalized

Functions
Pre-condition Steps Involved Included/

Specialized by Fun

The QueryManager returns the integrated results as a graph

The UI shows the graph to the user (only for human users)

Fun19: Data Discovery

Fun11: Data Collection

Fun12: Data Sampling

GF3:
eRISoftware

Access to a

eRI service

through VRE

(e.g.,

instrument-

related or other

non-VRE

service)

The agent accesses the menu or UI or APIs that contains the list of
instruments/real-time sensor data/processes/third-party software etc
The agent selects the one it desires.

The system redirects the agent to the eRI interface
The agent interacts directly with a dedicated UI (e.g., it
accesses/calibrates/configures instruments)

The system maintains a timestamped log with the user's actions

Fun7: Instrument Integration

Fun8: Instrument Configuration

Fun9: Instrument Calibration

Fun10: Instrument Monitoring

(the next ones are neither primitive nor

abstract; they are compound functions)
Fun11: Data Collection

Fun12: Data Sampling

GF4: Data

Cataloguing
 The user wishes to register a new resource to the VRE catalogue or

update an existing one
She selects the type of resource, in order to be redirected to the

appropriate UI
She fills in forms asking for the necessary metadata. Some fields are
already completed by the system.

The system checks the metadata and returns the corresponding
messages
The user performs quality improvement

The user selects to store the metadata to the catalogue
(if needed) The system communicates with the underlying eRI to verify

Fun13: Resource Registration

Fun14: Resource Update

Fun17: Resources Annotation

Fun18: Metadata Harvesting

VRE4EIC Page 79 of 125

D3.5 Final Architecture Design PU

Generalized

Functions
Pre-condition Steps Involved Included/

Specialized by Fun

that the dataset involved have been stored successfully

If the previous step is successful, the system stores the metadata to the
corresponding catalogue
The system also updates the preservation and provenance catalogues

as appropriate

GF5:

Workflow

Enactment

 The user builds the workflow using the UI of the Workflow Manager
The workflow is deployed on the execution engine(s)
The workflow is executed

The WF Manager monitors the workflow tasks and notify the user for
registered update
The results are stored in a temporary area accessible by the user

Fun15: Workflow Enactment

(the next ones are neither primitive nor

abstract; they are compound functions)

Fun12: Data Sampling

Table 5 Query Requirements

Function

ID

Requirement ID Function Description Involved components Related Generic Functions &

Notes

Fun1:
Simple

Search

PRQ10
Simple search

PRQ11

Multiple format

support

PRQ14
Spelling checking

PRQ15

The user performs a simple search
1. The user inserts in a form a list of keywords

2. The user submits the form

3. The system retrieves the query results and

returns them to the user

UI

IM
Query Mediator

Query Manager

MM

Resource Catalogue

LD

GF1: Querying

VRE4EIC Page 80 of 125

D3.5 Final Architecture Design PU

Function

ID
Requirement ID Function Description Involved components Related Generic Functions &

Notes

Query suggestion

IRQ5

Citation Tracking

AAAI

Fun2:

Cross

Search

PRQ12

Cross searching

PRQ14
Spelling checking

PRQ15

Query suggestion

PRQ20
Linking external

resources

IRQ5

Citation Tracking

The user performs a cross search

1. The user ticks on the cross searching option
1.1. (optional): The user defines a list of external

sources
2. The user inserts in a form a list of keywords

3. The user submits the form

4. The system retrieves the query results and

returns them to the user

UI

IM

Query Manager

MM
Resource Catalogue

LDM

AAAI

GF1: Querying

Fun3:

Advanced

Search

PRQ13

Advanced search

PRQ14

Spelling checking

PRQ15
Query suggestion

The user performs an advanced search

1. The user clicks on the advanced search option

2. The user selects/edits a number of search criteria
3. The user inserts in a form a list of keywords

4. The user submits the form
5. The system retrieves the query results and

returns them to the user

UI

IM

Query Manager

MM

Resource Catalogue
Provenance

Catalogue

GF1:Querying

VRE4EIC Page 81 of 125

D3.5 Final Architecture Design PU

Function

ID
Requirement ID Function Description Involved components Related Generic Functions &

Notes

PRQ16

Query Filter

IRQ5

Citation Tracking

Preservation

Catalogue

LDM

AAAI

Fun4:

Dataset

Viewing

PRQ17

Datasets viewing

The user views all the datasets metadata

1. The user performs simple search without

submitting any keywords
2. The system retrieves the full list of datasets’

metadata

UI

IM

Query Mediator

Query Manager

MM
Resource Catalogue

LDM

AAAI

GF2: Dataset/ Metadata Exploration

Fun5:
Dataset

Preselectio

n

PRQ18
Datasets pre-

selection

The user pre-selects datasets
1. The user views all the datasets (PRQ17)

2. The user selects the datasets to search on

UI

IM
Query Mediator

Query Manager

MM

Resource Catalogue

GF2: Dataset/ Metadata Exploration

VRE4EIC Page 82 of 125

D3.5 Final Architecture Design PU

Function

ID
Requirement ID Function Description Involved components Related Generic Functions &

Notes

LDM

AAAI

Fun6:
Dataset

Customiza

tion

PRQ19
Dataset customization

The user selects a set datasets to be exploited

during search

1. The user selects his profile

2. The user views all the datasets (PRQ17)
3. The user selects the datasets to search on

UI

IM
Query Mediator

Query Manager

MM

Resource Catalogue
User Catalogue

LDM

AAAI

GF2: Dataset/ Metadata Exploration

Table 6 Data Requirements

Function

ID

Requirement ID Function Description Involved components Related Generic Functions &

Notes

Fun7:

Instrument

Integration

CLRQ1

Instrument

Integration

The user views many instruments

1. The user selects to views all the available

instruments

2. The system returns an integrated list of instrument

description to the user

UI

IM

Query Mediator
Query Manager

GF3: eRISoftware

VRE4EIC Page 83 of 125

D3.5 Final Architecture Design PU

Function

ID
Requirement ID Function Description Involved components Related Generic Functions &

Notes

MM

Resource Catalogue

LDM

AAAI

Fun8:

Instrument

Configurati

on

CLRQ2
Instrument

Configuration

CLRQ4
Instrument

Access

CLRQ5
Configuration

Logging

CLRQ10
Process Control

The user configures an instrument

1. The user selects an instrument

2. The system redirects the user to the RI interface
3. The user configures the instrument (The RI creates

the appropriate logs)

UI

SM

Resource

Manager

MM
Resource Catalogue

IM

AAAI

GF3: eRISoftware

Fun9:

Instrument

Calibration

CLRQ3

Instrument

Calibration

CLRQ4
Instrument

Access

The user calibrates an instrument

1. The user selects an instrument
2. The system redirects the user to the RI interface

3. The user calibrates the instrument

UI

SM

Resource
Manager

MM

Resource Catalogue

GF3: eRISoftware

VRE4EIC Page 84 of 125

D3.5 Final Architecture Design PU

Function

ID
Requirement ID Function Description Involved components Related Generic Functions &

Notes

IM

AAAI

Fun10:

Instrument

Monitoring

CLRQ6
Instrument

Monitoring

CLRQ7
(Parameter)

Visualisation
CLRQ8
(Real-Time)

(Parameter/Data

) Visualisation

The user monitors an instrument

1. The user selects an instrument
2. The system redirects the user to the RI interface

3. The RI returns information to the user on the

instrument’s status/parameters/data

UI

SM

Resource
Manager

MM

Resource Catalogue
IM

AAAI

GF3: eRISoftware

Fun11:

Data

Collection

CLRQ11
Data Collection
CLRQ12
(Real-Time)

Data Collection

The user retrieves data from an instrument

1. The user performs a cross searching advanced

search

2. The system returns a list of results and the hosting

RIs

3. The user retrieves/collects the data from the RIs

UI

IM

Query Manager
MM

Resource Catalogue
User Catalogue

Resource Catalogue

SM
Resource

Manager

LD<
AAAI

GF1: Querying

GF2: Dataset/ Metadata Exploration

GF3: eRISoftware

VRE4EIC Page 85 of 125

D3.5 Final Architecture Design PU

Function

ID
Requirement ID Function Description Involved components Related Generic Functions &

Notes

Fun12:

Data

Sampling

CLRQ13
Data Sampling

The user performs data analysis

1. The user performs a cross searching advanced

search
2. The system returns a list of results and the hosting

RIs

3. The user retrieves/collects the data from the RIs
4. The user selects the analysis to be performed

(workflow)

5. The system returns the analysis results

UI

SM

Resource
Manager

MM

Resource Catalogue
User Catalogue

IM

Query
Manager

WM
AAAI

GF1: Querying

GF2: Dataset/ Metadata Exploration

GF3: eRISoftware

GF5: Workflow Enactment

 CTRQ9
Online Dataset

Editing
CLRQ14
Noise Reduction
CLRQ15
Data

Transmission
CLRQ16
Data

Transmission

Monitoring

PVRQ1
Data

Provenance
PVRQ2
Data Acquisition

Information

RIs responsibility

VRE4EIC Page 86 of 125

D3.5 Final Architecture Design PU

Function

ID
Requirement ID Function Description Involved components Related Generic Functions &

Notes

PVRQ3
Data Curation

Information
PVRQ4
Data Publication

Information

IRQ1
Data

Identification
IRQ3
Raw Data

Identification
IRQ4
Data Citation

CRQ1
Data Product

Generation

CRQ7

Data Replication

CRQ8

Replica

Synchronisation
PRQ7
Data

Compression
PRQ29

Data Processing

Monitoring
PRQ35

Data Backup

Fun13: CLRQ17 The user registers a resource performing (meta) UI GF4: Data Cataloguing

VRE4EIC Page 87 of 125

D3.5 Final Architecture Design PU

Function

ID
Requirement ID Function Description Involved components Related Generic Functions &

Notes

Resource

Registratio

n

Data

Cataloguing
CRQ2
Data Quality

Checking
CRQ3

Data Quality

Verification
CRQ6

Data Storage &

Preservation
PRQ4

Resource

Registration
PRQ5

(Metadata)

Registration
PRQ6

Data Conversion
CLRQ9

Experiment
CTRQ15

Funding body

Information
CLRQ18
Data Publication
IRQ2

Data Provider
IRQ4
Data Citation
PRQ8
Semantic

Harmonisation

data quality checking

1. The user selects to register/update a new resource

in the catalogue
2. The system checks the metadata and returns the

corresponding messages

3. The user performs the quality improvement
4. The user selects to store the metadata to the

catalogue

5. The system stores the metadata to the

corresponding catalogues

SM
Resource

Manager

MM

Whole

IM
DMM

LDM

AAAI

VRE4EIC Page 88 of 125

D3.5 Final Architecture Design PU

Function

ID
Requirement ID Function Description Involved components Related Generic Functions &

Notes

Fun14:

Resource

Update

CRQ4

Data Versioning

The user registers a new version of a resource

1. The user selects to register a new resource version

in the catalogue
2. The system updates the resource, preservation and

provenance catalogues accordingly

UI

SM

Resource
Manager

MM

Whole
IM

DMM

LDM
AAAI

GF4: Data Cataloguing

Fun15:

Workflow

Enactment

CRQ5

Workflow

Enactment
PRQ26
Scientific

Workflow

Enactment
PRQ28

Data Processing

Control
ORQ2

Processing

Parallelisation
ORQ4

Data

Compartmentiza

tion

The user creates a workflow

1. The user creates a workflow

2. The user select to run the workflow
3. The system returns the workflow’s results

UI

WM

MM
IM

AAAI

GF5: Workflow Enactment

Fun16:

Access

Control

CRQ6
Data Storage &

Preservation

Fundamental Infrastructure’s Functionality MM

AAAI

VRE4EIC Page 89 of 125

D3.5 Final Architecture Design PU

Function

ID
Requirement ID Function Description Involved components Related Generic Functions &

Notes

Fun17:

Resources

Annotation

PRQ1

Resources

Annotation
PRQ2

(Data)

Annotation
PRQ32

Quality Rating
PRQ34

Data Tag

The user annotates data/resource

1. The user selects a resource

2. The user annotates the resource
3. The system stores the appropriate information

UI

SM

Resource
Manager

MM

Resource Catalogue
Metadata

Catalogue

GF4: Data Cataloguing

Fun18:
Metadata

Harvesting

PRQ3

Metadata

Harvesting

The user enables metadata harvesting
1. The user selects a source to be harvested

2. The user selects the frequency
3. The system harvests the metadata and either

registers a new resource or updates an existing one’s

metadata

UI

SM
Resource

Manager

MM
Whole

IM
DMM

LDM

WM

GF4: Data Cataloguing

Fun19:

Data
Discovery

PRQ9
Data Discovery

and Access
PRQ31

Dataset

Download

The user discovers data using the searching

capabilities (see Query Requirements)

UI

IM
Query Manager

MM
Resource Catalogue

LDM

GF1: Querying

GF2: Dataset/ Metadata Exploration

Fun20: CTRQ4
Interface

1. On the user device: User goes to eVRE portal in the UM For details on the authentication

VRE4EIC Page 90 of 125

D3.5 Final Architecture Design PU

Function

ID
Requirement ID Function Description Involved components Related Generic Functions &

Notes

User/

Agent

Registratio

n

Customization
CTRQ5
Wizard

Configuration
CTRQ7

Multilingual

Interface

browser, and creates her/his own user profile using

functionalities provided by the User Manager.

2. The User Manager interacts with MM to register the

profile and gets from the MM the configuration

information needed to configure the user environment

3. Once the profile is created UM asks "Do you want to

register this device with eVRE as authenticator?” User

agrees

4. Depending on the device UM can ask the user to

download and install a software implementing

VRE4EIC authentication API (to enable the device to

implement authenticator client functionalities)

5. UM registers the device in MM and AAAI as

authenticator
6. UM shows message, "Registration complete."

AAAI

and registration framework adopted

in eVRE see the section Notes on

the EVRE authentication protocol

above

Fun21:

Agent

Authenticati

on

CTRQ1
Login
CTRQ31

Accounting

1) User Authentication (external authenticator

mode):
- User access eVRE in browser, sees an option "Sign

in with your registered device."

- User chooses this option and gets a message from

the browser, "Please complete this action on your

phone."
-On the phone:

 - User sees a notification similar to "Sign in to eVRE?”

- User selects this notification.
- User is shown a list of their VRE4EIC identities, e.g.,

"Sign in as Alice / Sign in as Bob."

- User picks an identity and provides it.

UI

UM
AAAI

MM (Fun)

VRE4EIC Page 91 of 125

D3.5 Final Architecture Design PU

Function

ID
Requirement ID Function Description Involved components Related Generic Functions &

Notes

-On the laptop:

- Web browser shows that the selected user is signed

in, and navigates to the signed-in page/restore the

user session etc.

2) Device authentication (external authenticator

mode)

- User connects an external instrument to a device or a

network connected to eVRE

- The device sends a message to eVRE to notify that

he wants to add a new device to the Research

Environment

- On the user laptop/smartphone signed to eVRE,user

sees a prompt similar to “Authorise instrument to sign

in on eVRE, chose identity”

- User is shown a list of their eVRE identities, e.g.,

"Sign in as Alice / Sign in as Bob”.

- User picks an identity and provides it.

- Instrument is ready to operate on eVRE.

Fun22:

Continuous

Access

CTRQ2

Continuous

Access

1)Continuous access: save session Use Case (

session explicitly closed)

- Agent authenticates on eVRE
- if present, the previous session is restored

- agent operate on eVRE
- Agent invoke ‘sign out’ functionality in the UM GUI, or

specific ‘save session’ functionality

- UM saves all information related to the current

session in a specific storage assigning an identifier to

UI, UM, AAAI, MM This requirement has been

interpreted as: ‘maintain user’s

session across multiple

connections’

VRE4EIC Page 92 of 125

D3.5 Final Architecture Design PU

Function

ID
Requirement ID Function Description Involved components Related Generic Functions &

Notes

the saved session

- UM interacts with the MM manager in order to: i)

associate the session identifier to the User Profile and

ii) change the status of the User profile in case of sign

out

- If required UM interacts with AAAI, this could be

required when we need to notify to external eRI that

the connection is closed and the user is no longer

operating on their resources
2) Continuous access: save session Use Case (

session not explicitly closed)
- Agent authenticates on eVRE

- if present, the previous session is restored

- Agent operate on eVRE
- For a defined amount of time no action occurs

- UM automatically saves all information related to the

current session in a specific storage assigning an

identifier to the saved session

- UM interacts with the MM manager in order to

associate the session identifier to the User Profile

3) Continuous access: restore session Use Case

- Agent authenticates on eVRE
- The User Manager interacts with Metadata Manager

to discover if a session identifier is associated to the

user profile
- If an id is returned the information is retrieved from

the specific storage

- The UM interacts with the AAAI to verify that the user

can access the content of the old session-is restored

-Agent operates on eVRE

VRE4EIC Page 93 of 125

D3.5 Final Architecture Design PU

Function

ID
Requirement ID Function Description Involved components Related Generic Functions &

Notes

Fun23:

Update

Alert

CTRQ8

Update Alert

CTRQ10

Notification

1) Update Alert: event subscription

- User authenticates on eVRE
- The user uses User Manager to subscribe to events

- The UM saves subscriptions on the User Profile (MM)

and associate the id of the user to the list of users

subscribed to that event in the event list

2) Update Alert: update notification
- User authenticates on eVRE

- The user session is restored

- The user uses the UM functionalities to read the

alerts related to her/his subscriptions.

UI, MM, UM, RM, IM,

AAAI

An user receives a notification when

an event she is interested in occurs.

Generally speaking there could be

a large number of events in a

eVRE, to name a few: changes in

the lifecycle of processes, changes

in the availability status of a

resource published by a RI, updates

of a shared documents etc.

Fun24:

Resource

Connection

CTRQ28

Computing

Resource

Connection

Access EGI computational resources via OCCI

The user has previously obtained a VOMS

certificate (http://www.eu-emi.eu/training/cert-

tutorial) via AAAI functionalities, this information is

registered in the user profile and the actual

certificate is managed by AAAI.

- User authenticates on eVRE

- The user session is restored

- User selects the EGI entry point

- The user sends a request, validated with the VOMS

certificate, to the EGI entry point asking for

computational resources
- The user chose the references to the computational

resources and use them

UI, IM, AAAI, MM This requirement means the

possibility to access

computational or storage

resources for an application

installed in the eVRE. These

resources can be provided by

eVRE environment or by an

external provider.

This requires that the user has

permission to use those

resources and there is an

Adapter in the IM that interacts

with those resources,

http://www.eu-emi.eu/training/cert-tutorial
http://www.eu-emi.eu/training/cert-tutorial

10.2Requirements and components

The tables in this Section show the components involved in the implementation of user
requirements. They have all the same structure, and each of them reflect a pillar of requirements.
For every requirement pillar, the table highlights: the relationships with other requirements, the
relationships with the metadata catalogue (“CERIF entities” column) and notes and comments that
we have on the requirement.

Before each table, a diagram is given reporting the incidence matrix between the components in the
Reference Architecture (row) and the requirement (column).

10.2.1 Data Identification and Citation

UM - User Manager, RM - Resource Manager, AM - App Manager, IM - Interoperability Manager, MM
- Metadata Manager, LDM - Linked Data Manager, QM - Query

Table 7 Data Identification and Citation

Req. ID Description Rel.
with
other
req.

Components
involved

CERIF entities Notes and
Comments

IRQ1 Data
Identification

CLRQ17 AAAI, MM,
IM, LDM

cfResultProduct
(dataset), associated
cfFedId

IRQ2 Data
Provider

 AAAI, MM cfOrgUnit_ResultPriduc
t

IRQ3 Raw Data
Identification

IRQ1 AAAI, IM

VRE4EIC Page 95 of 125

D3.5 Final Architecture Design PU

Req. ID Description Rel.
with
other
req.

Components
involved

CERIF entities Notes and
Comments

IRQ4 Data Citation IRQ1 AAAI, RM,
MM

IRQ5 Citation
Tracking

 MM Through the
exploitation of
the Provenance
Catalogue

10.2.2 Data Curation

UM - User Manager, RM - Resource Manager, AM - App Manager, IM - Interoperability Manager, MM
- Metadata Manager, LDM - Linked Data Manager, QM - Query

Table 8 Data Curation

Req. ID Description Rel. with
other
req.

Components
involved

CERIF
entities

Notes and Comments

CRQ1 Data Product
Generation

 eRI’s responsibility

CRQ2 Data Quality
Checking

 RM, AAAI, MM,
IM

 Some checking and
verification is needed
before including data
descriptions in our
catalogues

VRE4EIC Page 96 of 125

D3.5 Final Architecture Design PU

Req. ID Description Rel. with
other
req.

Components
involved

CERIF
entities

Notes and Comments

CRQ3 Data Quality
Verification

CRQ2 AAAI, RM, MM,
IM

CRQ4 Data
Versioning

 AAAI,RM, MM,
IM, LDM

 Only metadata update
and versioning is our
responsibility

CRQ5 Workflow
Enactment

 AAAI, WM,
MM, IM

CRQ6 Data Storage &
Preservation

 AAAI, MM we only deal with the
metadata here

CRQ7 Data
Replication

 eRIs responsibility

CRQ8 Replica
Synchronisatio
n

 AAAI, RM, MM

 eRIs responsibility

10.2.3 Data Cataloguing

UM - User Manager, RM - Resource Manager, AM - App Manager, IM - Interoperability Manager, MM
- Metadata Manager, LDM - Linked Data Manager, QM - Query

VRE4EIC Page 97 of 125

D3.5 Final Architecture Design PU

Table 9 Data Cataloguing

Req. ID Description Rel. with
other
req.

Components
involved

CERIF
entities

Notes and Comments

CLRQ1 Instrument
Integration

 AAAI,AM, MM,
IM, LDM

 CERIF has an
equipment and a
measurement entity
For this set of
requirements (CLRQ)
we have to match
them to the ENVRI 6
pillars. we assume we
access the eRI
functionalities, we
only say to the users
what they can do and
instruct the eRIs to
start their sensors etc.
We act as mediators

CLRQ2 Instrument
Configuration

 AAAI,AM,MM,
IM

CLRQ3 Instrument
Calibration

CLRQ2 AAAI,AM, MM,
IM

 linked with CLRQ2

CLRQ4 Instrument
Access

 AAAI,AM, IM

CLRQ5 Configuration
Logging

 AAAI,AM,
DMM, MM, IM

CLRQ6 Instrument
Monitoring

CLRQ4 UI,AAAI,AM,
MM, IM

 Uses CLRQ4

CLRQ7 (Parameter)
Visualisation

Similar
to CLRQ6

AAAI,AM, MM,
IM

CLRQ8 (Real-Time)
(Parameter/Data
) Visualisation

 AAAI,AM, MM,
IM

 May require data
streaming analysis

CLRQ9 Experiment AAAI, AM,
MM, IM, WM

VRE4EIC Page 98 of 125

D3.5 Final Architecture Design PU

Req. ID Description Rel. with
other
req.

Components
involved

CERIF
entities

Notes and Comments

CLRQ10 Process Control AAAI, WM,
MM, IM

CLRQ11 Data Collection AAAI, AM,
MM, IM

 A meta requirement. It
contains a lot of
features. It should be
split into sub-
requirements.
Will affect provenance
and preservation
catalogues.

CLRQ12 (Real-Time) Data
Collection

CLRQ11 AAAI, AM,
MM, IM

 Specialization of
CLRQ11

CLRQ13 Data Sampling AAAI, AM,
DMM, IM

 Can be modeled as
real time integration
with a statistical
program.
Other options could
be:
i) enable researchers
to deploy and run
their statistical
programs on eVRE,
ii) eVRE provides a set
of statistical libraries
Need to be defined.
e-RIs responsible

CLRQ14 Noise Reduction e-RIs responsible

CLRQ15 Data
Transmission

 AAAI, IM, RM e-RIs responsible

CLRQ16 Data
Transmission
Monitoring

 AAAI, IM, RM e-RIs responsible

CLRQ17 Data
Cataloguing

 RI, AAAI,
DMM, MM, IM

CLRQ18 Data Publication LDM, AAAI,
MM

 This requirement
seems more generic

VRE4EIC Page 99 of 125

D3.5 Final Architecture Design PU

10.2.4 Data Processing

UM - User Manager, RM - Resource Manager, AM - App Manager, IM - Interoperability Manager, MM
- Metadata Manager, LDM - Linked Data Manager, QM - Query

Table 10 Data Processing

Req. ID Description Rel.
with
other
req.

Componen
ts
involved

CERIF
entities

Notes and Comments

PRQ1 Resources
Annotation

 AAAI, RM,
MM

PRQ2 (Data)
Annotation

 AAAI, RM,
MM

PRQ3 Metadata
Harvesting

 AAAI, MM,
IM

PRQ4 Resource
Registration

 AAAI, MM,
IM

VRE4EIC Page 100 of 125

D3.5 Final Architecture Design PU

Req. ID Description Rel.
with
other
req.

Componen
ts
involved

CERIF
entities

Notes and Comments

PRQ5 (Metadata)
Registration

PRQ4 AAAI, MM,
IM

PRQ6 Data
Conversion

 AAAI, MM,
IM LDM

 Affects provenance and preservation
catalogues

PRQ7 Data
Compression

 AAAI, MM,
IM, WM

PRQ8 Semantic
Harmonisati
on

 AAAI,
DMM, MM

 Consider
http://www.w3.org/2005/Incubator/s
sn/ssnx/ssn which is being formalised
at http://w3c.github.io/sdw/ssn/

PRQ9 Data
Discovery
and Access

PRQ1
0,
PRQ1
2,
PRQ1
3

AAAI, MM,
IM (QM)

 Access is not our responsibility.
Discovery is accomplished through
metadata and the catalogue

PRQ10 Simple
search

Uses:
PRQ1
2

QM, AAAI ,
MM

Search
into all /
given
attribut
es of
CERIF
metadat
a

Use opensearch.org for the query
mediator. It is an interface.
We should also guide users how to
write queries (e.g., suggest queries)
Simple search typically addresses the
catalogue, other queries focus on the
data themselves.
The e-RI will also have their own
search engines. How this integration
will take place. Merging the results is
not easy! The user may be asked how
to complete the merging process
(steer the process)

PRQ11 Multiple
format
support

Uses:
PRQ1
2

QM, AAAI,
MM, IM(
DMM)

Metadat
a for
cfResPu
bl (doc),
cfMediu
m,(any
other
media),
cfResPr
od

VRE4EIC Page 101 of 125

D3.5 Final Architecture Design PU

Req. ID Description Rel.
with
other
req.

Componen
ts
involved

CERIF
entities

Notes and Comments

(dataset
s)

PRQ12 Cross
searching

 AAAI, MM,
IM (DMM,
QM)

Based
on
mappin
gs CERIF
- X

The query manager must know the
query language of datasets involved
and the mapper needs to know the
result data formats, these info are
stored on the Resource Manager

PRQ13 Advanced
search

Uses:
PRQ1
2

AAAI, MM,
IM (DMM,
QM)

Search
into all /
given
attribut
es of
CERIF
metadat
a

There are 3 levels of queries,
existential (generic), contextual
(catalogue) and queries on the data.
The latter is very difficult, we may
decide that we only give connections
to the underlying search facilities of
eRIs.Or we can go further and suggest
querying, transformation, merging etc
facilities. This is an open question for
now

PRQ14 Spelling
checking

 AAAI, QM,
MM

Use the
thesaur
us
stored
in the
semanti
c layer

Need to decide the best way to
implement Language Vocabularies
(consider opensearch.org)

PRQ15 Query
suggestion

 QM, AAAI,
MM

Suggest
metadat
a values
‘similar’
to xx
from
attribut
es
stored
in CERIf
entities

similar searches to the ones the user
places

VRE4EIC Page 102 of 125

D3.5 Final Architecture Design PU

Req. ID Description Rel.
with
other
req.

Componen
ts
involved

CERIF
entities

Notes and Comments

PRQ16 Query filter AAAI, QM,
MM

NA

PRQ17 Datasets
viewing

PRQ1
8

AAAI, AM,
IM

 we focus only on metadata, not the
actual data.We could offer an Amazon
like interface, where the different
facets (topics or subjects) of the data
available are presented

PRQ18 Datasets pre-
selection

 AAAI, UM,
MM

 Only authorized-users can set up the
list of datasets available in a
department

PRQ19 Dataset
customizatio
n

 AAAI, UM,
MM

 The user (or administrator) narrows
the search to specific types of
datasets only (notice that we only
focus on metadata here). This is
different from pre-selection,as
preselection is an one-time process,
whereas customization is specific to
each query.

PRQ20 Linking
external
resources

 QM, AAAI,
MM, IM

 datasets given by sources not
officially connected to the VRE, as
long as they satisfy certain baseline
requirements

PRQ21 Data
Assimilation

 AAAI, WM,
AM, MM,
IM(DMM)

PRQ22 Data Analysis AAAI, AM,
MM,,
IM(DMM),
WM

PRQ23 Data Mining AAAI, AM,
MM, IM

PRQ24 Data
Extraction

 AAAI, AM,
MM, IM

PRQ25 Scientific
Modelling
and
Simulation

 AAAI, AM,
MM,
IM(DMM),
WM

VRE4EIC Page 103 of 125

D3.5 Final Architecture Design PU

Req. ID Description Rel.
with
other
req.

Componen
ts
involved

CERIF
entities

Notes and Comments

PRQ26 (Scientific)
Workflow
Enactment

 AAAI, WM,
AM, MM,
IM(DMM)

PRQ27 (Scientific)
Visualisation

 AAAI, AM,
IM

PRQ28 Data
Processing
Control

 AAAI, WM,
AM, MM,
IM(DMM)

PRQ29 Data
Processing
Monitoring

 AAAI, WM,
AM, MM,
IM

PRQ30 API AAAI, IM

PRQ31 Dataset
Download

 AAAI, IM

PRQ32 Quality
Rating

 AAAI, MM

PRQ33 Peer Review AAAI, MM,
AM

PRQ34 Data tag AAAI, MM

PRQ35 Data Backup AAAI, IM eRIs responsibility

10.2.5 Data Optimization

VRE4EIC Page 104 of 125

D3.5 Final Architecture Design PU

UM - User Manager, RM - Resource Manager, AM - App Manager, IM - Interoperability Manager, MM
- Metadata Manager, LDM - Linked Data Manager, QM - Query

Table 11 Data Optimization

Req. ID Description Rel.
with
other
req.

Components
involved

CERIF
entities

Notes and
Comments

ORQ1 Large datasets
processing

 AAAI, RM, AM,
IM, WM

ORQ2 Processing
parallelisation

 AAAI, RM, AM,
IM, WM

ORQ3 Real time processing AAAI,
IM(Adapter),
WM

ORQ4 Data
Compartmentalizati
on

 AAAI, RM, AM,
IM, WM, MM

10.2.6 Data Provenance

VRE4EIC Page 105 of 125

D3.5 Final Architecture Design PU

UM - User Manager, RM - Resource Manager, AM - App Manager, IM - Interoperability Manager, MM
- Metadata Manager, LDM - Linked Data Manager, QM - Query

Table 12 Data Provenance

Req. ID Description Rel. with
other
req.

Components
involved

CERIF
entities

Notes and Comments

PVRQ1 Data
Provenance

 AAAI, MM

PVRQ2 Data
acquisition
information

 AAAI, MM

PVRQ3 Data curation
information

 AAAI, MM

PVRQ4 Data
publication
information

 AAAI, MM

10.2.7 Collaboration, Training and Support

VRE4EIC Page 106 of 125

D3.5 Final Architecture Design PU

UM - User Manager, RM - Resource Manager, AM - App Manager, IM - Interoperability Manager, MM
- Metadata Manager, LDM - Linked Data Manager, QM - Query

Table 13Collaboration, Training and Support

Req. ID Description Rel. with
other
req.

Components
involved

CERIF entities Notes and
Comments

CTRQ1 Login UM, AAAI cfPerson for
user + some
profile
information as
role in
cfPers_Srv,
cfPers_Lang

CTRQ2 and CTRQ3
seem special cases
of CTRQ1

CTRQ2 Continuous
access

CTRQ3 UM, AAAI Keep
information
linked to
cfPerson
(datasets,
services,...) with
timestamp?

Ubiquity,
availability (both
non-functional
requirements) and
multi-channel
(functional). Not
across devices, but
stay connected
forever.For
example, if
connection fails,
the session should
be the same after
we reconnect. This
means we need to
maintain in our
servers all users’
sessions
(scalability issues)

CTRQ3 Single login CTRQ1 UM, AAAI cfPerson for
user +profile
information

Aka Single sign-on

VRE4EIC Page 107 of 125

D3.5 Final Architecture Design PU

CTRQ4 Interface
customization

 UM, AAAI cfPerson for
user + profile
information

Customize the UI
of each user, based
on what activities
she frequently
performs.
Customization,
localization and
personalization,
Accessibility is also
important

CTRQ5 Wizard
configuration

GRQ4 UM, AAAI cfPerson for
user + profile
information

CTRQ6 User instruction UM cfPerson for
user +
cfPers_Medium
,
cfPers_ResPubl
(doc)

This aspect will
include not only
tutorials at the
VRE4EIC level, but
also at the eRI
level. This will give
incentives for the
researchers to
generate and
upload their own
tutorials

CTRQ7 Multilingual
interface

 UM cfLang /
multilingual
attributes of all
entities

CTRQ7 could be
included in CTRQ5

CTRQ8 Update alert CTRQ10 SM(UM,...) But “activity
streams” is much
more potent.And it
is important for
interoperability

CTRQ9 Online dataset
editing

 AM, AAAI Link to cfFacility
(the RI) that has
the cfResProd
(dataset), or to
a given cfServ
(service)

The tool has to be
provided by some
eRI and the users
only access the
datasets of that
eRI. We send the
VRE users there.

VRE4EIC Page 108 of 125

D3.5 Final Architecture Design PU

CTRQ10 Notification CTRQ8 SM(UM,...) cfPerson for
user + profile
information

There is a
subscription
mechanism.
Consider “activity
streams” for this

CTRQ11 Additional
services
interfaces

 AAAI, MM,
IM

cfServ A use case for the
VRE system
administrator.

CTRQ12 Search for
funding

Similar
to:
PRQ10,
PRQ11,
PRQ13

QM, AAAI,
MM, IM

 We assume there
is a person
populating our
catalogue with
metadata about
project calls. In this
case, calls are a
resource as any
other.

CTRQ13 Funding
proposal

Similar to
CTRQ12

AAAI, MM,
QM, IM

 Only the proposals
accessible by the
authors and the
successful ones

CTRQ14

Electronic
funding bid

 This is irrelevant
for us! There are
already complex
systems for this

CTRQ15 Funding body
information

 QM,AAAI ,
MM

 Information about
name and address
of the body or
more complex,
such as policies?
All probably, even
though is difficult
to implement

CTRQ16 Funding alert Similar
to:
CTRQ8,
CTRQ10

AAAI, UM,
MM

 A standard query
executed
periodically

CTRQ17 Research team
setup

 AAAI, MM,
AM

VRE4EIC Page 109 of 125

D3.5 Final Architecture Design PU

CTRQ18 Finding
collaborators

Similar
to:
PRQ10,
PRQ11,
PRQ13

AAAI, QM,
MM

CTRQ19 Expertise
finding

Similar
to:
PRQ10,
PRQ11,
PRQ13,
related
to
CTRQ21

AAAI, QM,
MM

 These
requirements are
not only simple
queries, they are
like
recommendation
systems.
Decision: no
recommendation

CTRQ20

Forum tool AAAI,AM just a simple
message exchange
system suffices at
this point, plug a
tool for this

CTRQ21

SNS integration AAAI, AM, IM There are simple
APIs we can
integrate in our
system that give
twitter buttons,
etc

CTRQ22 Group
newsletter

 AM, MM

CTRQ23 Meeting
organizer

 AAAI, AM,
UM

 Integrate a tool

CTRQ24 Digest email AM, MM

CTRQ25 Teleconferencin
g

 AAAI, AM,
UM

 Considering the
integration with a
teleconferencing
suite

CTRQ26 Instant message AAAI, AM,
UM

 Integrate a tool

CTRQ27 Project
monitoring

 AAAI, AM,
IM, MM

 A
tracking/ticketing
system for the
project, like dates,
deliverables,etc.
Integrate a tool

VRE4EIC Page 110 of 125

D3.5 Final Architecture Design PU

CTRQ28 Computing
resource
connection

 AM, AAAI, IM

CTRQ29 Education
support

CTRQ6 AM,MM,AAAI Does this require
integration with
MOOC platforms
(in the
architecture)?

CTRQ30 Financial
information

 AAAI, IM,
MM

 A billing
component is
needed. Not
everyone could use
for free certain
components

CTRQ31 Accounting AAAI, MM

CTRQ32 Workflow
engine

 AAAI, WM

CTRQ33 API AAAI, IM

10.3Conceptual components: Interface Descriptions

10.3.1 User Manager Interfaces

10.3.1.1 User Manager: User management interface description

Table 14 User Manager Interface

Operation Parameter-list Return type Map to
CERIF entity

Notes

createUserProfile user:UserProfile ReturnValue UserProfile Creates a user
profile

updateUserProfile userId:String,
user:UserProfile

ReturnValue UserProfile Updates the
profile userId

removeUserProfil
e

userId:String ReturnValue Deletes the profile
userId

VRE4EIC Page 111 of 125

D3.5 Final Architecture Design PU

getUserProfile userId:String UserProfile UserProfile Retrieves the
profile userId

getUserProfile creds:UserCredential
s

UserProfile UserProfile Gets the profile
with provided
credentials

getUserProfile query:UserQuery UserProfile[0..*] UserProfile Gets a list of
profiles (wildcards
allowed in query).

10.3.1.2 User Manager: Notification management interface description
Events related to RI resources are captured via Resource Manager and registered in Metadata
Manager. The User Manager uses the Metadata Manager to check status changes.

Table 15 Notification Management Interface

Operation Parameter-list Return type Map to
CERIF entity

Notes

subscribeEvent userId:String,
events:EVREEvent[0..*]

ReturnValue EVREEvent Subscribes
to a list of
events

checkEvent userId:String,
eventId:String

ReturnValue Returns the
status of
the specific
event

checkEvents userId:String ReturnValue[0..*] Returns the
status of all
subscribed
events

getSubscribedEvent
s

userId:String EVREEvent[0..*] EVREEvent Returns list
of events
subscribed
by userId

10.3.1.3 User Manager: login interface description
The idea is that VRE4EIC authentication services could be based on scoped credentials assigned to a
User or an Entity and controlled by authenticators (https://en.wikipedia.org/wiki/Authenticator).
Please note that we are talking of the authentication process between an eVRE user and the eVRE
system, it will ‘wrap’ the protocols adopted by VRE4EIC AAAI infrastructure.
The scoping of the credentials must be enforced jointly by a User Agent implementing the VRE4EIC
authentication API and an authenticator that holds the credential, by constraining the availability and
usage of credentials.
Scoped credentials must be located on authenticators, which can use them to perform operations
subject to user consent.

VRE4EIC Page 112 of 125

D3.5 Final Architecture Design PU

According to outcome of D2.1 we should have two types of authenticator:

 Authenticators located in the same device (e.g., smart phone, tablet, desktop PC) as the user
agent is running on.

 Authenticators operate autonomously from the device running the user agent, and accessed
via network or other protocols. This last part is needed mainly to implement requirements
about external instruments or devices (DRQ2, DRQ4, DRQ5…)

To implement this behavior we designed three interfaces: the login and the Authenticator
Management interfaces provided by the User Manager component and the Authentication interface
provided by a component called AuthenticatorApp that implements the client side functionalities of
the authentication mechanism.

Table 16 Login Management Interface

Operation Parameter-list Return type Map to
CERIF
entity

Notes

login creds:UserCredentials ReturnValue

login authenticatorId:String,
deviceId:string

ReturnValue Uses external
Authenticator
(see: UC 21) for
login

logout userToken:String ReturnValue Signs out the user

10.3.1.4 User Manager: Authenticator Management interface description

Operation Parameter-list Return type Map to
CERIF
entity

Notes

registerAuthenticator creds:UserCredentials,
authenticatorId:String

ReturnValue Register external
authenticator

removeAuthenticator creds:UserCredentials,
authenticatorId:String

ReturnValue Remove external
authenticator

10.3.1.5 AuthenticatorApp: Authentication interface description

Table 17 Authenticator App Interface

Operation Parameter-list Return type Map to
CERIF
entity

Notes

VRE4EIC Page 113 of 125

D3.5 Final Architecture Design PU

authenticate reqInfo:info ReturnValue The reqInfo
contains
information
about device
requesting
authentication
and the eVRE
service that has
been requested.

synchCredentials authenticatorId:String,
creds:UserCredentials[1..*]

ReturnValue Synchronize
credentials with
the eVRE

10.3.2 Resource Manager: Resource management interface description

Table 18 Resource Manager Interface

Operation Parameter-list Return type Map to
CERIF
entity

Notes

addResourceProfile resource:ResProfi
le

ReturnValue ResProfile

updateResourceProfil
e

resourceId:String,
resource:ResProfi
le

ReturnValue ResProfile

removeResourceProfi
le

resourceId:String ReturnValue

getResourceProfiles query:ResQuery ResourceProfile[0..
*]

ResProfile Wildcards can be
specified in the
query

getResourceProfile resourceId:String ResourceProfile ResProfile

isResourceAvailable resourceId:String ReturnValue Checks if the
resource is
currently
available in the RI,
if RI provides this
service.
Depending on the
RI service the
return value can
include info like:

VRE4EIC Page 114 of 125

D3.5 Final Architecture Design PU

ETA for
downtime,
current use rate
etc

10.3.3 Workflow Manager

10.3.3.1 Workflow Manager: Wf Repository Access interface

Table 19 WF Repository Access Interface

Operation Parameter-list Return type Map to CERIF entity Notes

getWF idWF:String WorkFlowDescription WorkFlowDescriptio
n

getWFs idWFs:String[1..*] WorkFlowDescription[0..
*]

WorkFlowDescriptio
n

getWFs wfQuery WorkFlowDescription[0..
*]

WorkFlowDescriptio
n

Wildcards
allowed

10.3.3.2 Workflow Manager: Wf management interface

Table 20Interface WF Config Manager

Operation Parameter-list Return type Map to CERIF entity Notes

createWF wf:
WorkFlowDescription

ReturnValue WorkFlowDescriptio
n

updateWF idWF:String ReturnValue

deleteWF idWF:String ReturnValue

getWFs idWFs:String[1..*] WorkFlowDescription[0
..*]

WorkFlowDescriptio
n

executeWF idWF:String ReturnValue

VRE4EIC Page 115 of 125

D3.5 Final Architecture Design PU

stopWF idWF:String ReturnValue

pauseWF idWF:String ReturnValue

getWFStatus idWF:String ReturnValue

10.3.4 MOM Component

10.3.4.1 MOM: Topic interface

Table 21 MOM Topic Interface

Operation Parameter-list Return type Map to CERIF
entity

Notes

getTopics query:TopicQuery Topic[0..*] Topic Wildcards
allowed

createTopic topic:Topic ReturnValue Topic

updateTopic topicId:String ReturnValue

removeTopic topicId:String ReturnValue

10.3.4.2 MOM: Message Management interface

Table 22 MOM Message Interface

Operation Parameter-list Return type Map to CERIF
entity

Notes

addMessage msgs:Message[1..*] Return values Routing info
stored in
messages

getMessages topicIds:String[1..*] Message[0..*] Message

getMessages topicId:String[1..*],
query:MessageQuer
y

Message[0..*] Message Wildcards
allowed

VRE4EIC Page 116 of 125

D3.5 Final Architecture Design PU

getTopics query:TopicQuery Topic[0..*] Topic Wildcards
allowed

subscribeTopic topicIds:[1..*] ReturnValue

removeSubscriptio
n

topicIds:[1..*] ReturnValue

checkTopic topicIds:[1..*] ReturnValue

10.3.5 Metadata Manager Interfaces

10.3.5.1 Metadata Manager Get Metadata Interfaces

Table 23Metadata Manager Get Metadata Interface

Operation Name Parameter-list Return type Map
to
CERIF
entit
y

Notes

getResourceMetadata

String:
resourceURI
Collection<Strin
g> graphspaces

Collection<Tripl
e> results

 The method takes
as input the URI of a
resource, and the
corresponding
graphspaces and
returns the
contents of the
metadata catalogue
as a collection of
triples (i.e. <S, P,
O>, where
S=subject,
P=predicate and
O=Object).

getResourceMetadataUsingT
ype

String:
resourceURI
Collection<Strin
g> graphspaces
Enum:
metadataType

Collection<Tripl
e> results

 The method is
similar in spirit with
getResourceMetada
ta method,
however it also
contains a type
parameter to
specify the exact
metadata type that
is requested (i.e..
owner of a

VRE4EIC Page 117 of 125

D3.5 Final Architecture Design PU

resource).

searchForMetadata

Collection<Strin
g> queryTerms
Collection<Strin
g> graphspaces

Collection<Tripl
e> results

 The method takes
as input a set of
queryTerms and the
graphspaces to
search for and
searches in the
metadata
catalogues for these
terms. Finally it
returns the results
as a collection of
triples.

The Metadata Manager also contains the ManageMetadata interface that allows users to add new
information or to update existing information from the metadata catalogues. This interface is
exploited from almost all the sub-components of the SystemManager (ResourceManager,
UserManager, etc.). These components invoke the appropriate methods of the interface every time
some entry needs to be updated; the rationale is that each Manager (from the System Manager) will
update the appropriate metadata catalogue (i.e., the User Manager will be able to update only the
metadata about users). However, in some cases the ManageMetadata can be used by particular
users or agents (having an administrative role) for updating information in the metadata catalogues.
Furthermore, the LDManager uses this interface for adding metadata information as regards to the
publishing of Data also as Linked Open Data.

10.3.5.2 Metadata Manager: ManageMetadata interface

Table 24 Metadata Manager Manage Metadata Interface

Operation Name Parameter-list Return type Map to
CERIF
entity

Notes

VRE4EIC Page 118 of 125

D3.5 Final Architecture Design PU

insertUpdateMetad
ata

String: resourceURI
Enum:
metadataType
String:
metadataValue
String: graphspace

void The method updates
(or adds if such
information does not
exist) particular
information about the
metadata of a
resource. The type of
the metadata and the
corresponding value
are also given in the
parameters list. The
new triples is being
added under the given
graphspace.

deleteMetadata String: resourceURI
String: graphspace

void This methods deletes
information about a
specific metadata
resource from the
given graphspace.

Apart from the interfaces of the Metadata Manager component, there is also the ThesaurusAPI
interface, offered by the Thesaurus subcomponent, which is being used by the Query Manager and
the UI components to retrieve suggested terms during search and spell checking. In addition, the
ProvenanceAPI interface, offered by the Provenance Manager subcomponent, enables the storing of
information about Queries and workflows and is being used by the Workflow Manager and the Query
Manager.

10.3.5.3 Metadata manager: ThesaurusAPI interface

Table 25 Metadata Manager Thesaurus Interface

Operation Name Parameter-list Return type Map to
CERIF
entity

Notes

getSuggestedTerm
s

String: queryTerm Collection<String>
suggestedTerms

 The method takes as
input a queryTerm,
and searches in the
catalogue maintained
by the Thesaurus
component for
suggested terms. For
instance if the
queryTerm is “inf”
then it will return
(among others) the
terms
“infrastructure”,
“inference”, etc.

VRE4EIC Page 119 of 125

D3.5 Final Architecture Design PU

getSimilarTerms

String: queryTerm
int: editDistance

Collection<String>
similarTerms

 The method takes as
input a queryTerm
and a value for the
editDistance function
to perform spell
checking. It returns a
ranked collection of
potential corrections
for the given query
term.

10.3.5.4 Metadata Manager: ProvenanceAPI interface

Table 26 MetadataManager Provenance Interface

Operation Name Parameter-
list

Return type Map
to
CERI
F
entit
y

Notes

getProvenanceMetadata

String:
resourceURI

Collection<Tripl
e> results

 The method takes as
input the URI of a
resource and returns
all the available
provenance metadata
of the resource as a
collection of triples.

getProvenanceMetadataUsing
Type

String
resourceURI
Enum:
metadataTyp
e

Collection<Tripl
e> results

 The method is similar
in spirit with
getProvenanceMetad
ata, however the
current one uses one
more parameter for
defining the type of
the metadata that is
requested, and
returns the facts
about provenance of
the given resource as
a collection of triples.

VRE4EIC Page 120 of 125

D3.5 Final Architecture Design PU

updateProvenanceMetadata

String:
resourceURI
Enum:
metadataTyp
e
String:
metadataVal
ue

void The method updates
(or adds if such
information does not
exist particular
information about the
provenance of a
resource. The type of
the metadata and the
corresponding value
are also given in the
parameters list.

We should note that there is no direct connection between the Mapping Manager (subcomponent of
the Model Mapper) and the Metadata Manager. The reason is that the Mapping Manager (as it is
shown in the corresponding diagram) is being exploited by the Query Manager directly whenever it is
required to perform mappings (over data or over a query).

10.3.6 Query Manager Component: SearchAPI interface

Table 27 Query Manager Interface

Operation Name Parameter-list Return type Map
to
CERI
F
entit
y

Notes

searchSimple

Collection<String>
queryTerms
Collection<Pair<String,Stri
ng>> preferences

Collection<Resu
lt> results

 The method
takes as input
a set of query
terms, and a
set of
preferences -
expressed as
key-value
pairs (i.e.
perform
ranking,
filtering, etc.)-
and searches
locally, and
finally returns
a collection of
results.

VRE4EIC Page 121 of 125

D3.5 Final Architecture Design PU

searchSimpleWithinRang
e

Collection<String>
queryTerms
Collection<Pair<String,Stri
ng>> preferences
int: startOffset
int: limit

Collection<Resu
lt> results

 The
functionality
is similar in
spirit with
searchSimple
method, with
the only
difference
that it takes
as input the
startOffset
and the upper
limit, to
support
paging of
results (i.e.
starting from
result 1 bring
100 results).

searchFederated

Collection<String>
queryTerms
Collection<String>
dataSources
Collection<Pair<String,Stri
ng>> preferences

Collection<Resu
lt> results

 The method
takes as input
a set of
queryTerms, a
set of data
sources, and a
set of
preferences -
expressed as
key-value
pairs- and
performs a
federated
search over
the given data
sources, and
finally returns
a collection of
results.

VRE4EIC Page 122 of 125

D3.5 Final Architecture Design PU

searchFederatedWithinR
ange

Collection<String>
queryTerms
Collection<String>
dataSources
Collection<Pair<String,Stri
ng>> preferences
int: startOffset
int: limit

Collection<Resu
lt> results

 The
functionality
is similar in
spirit with
searchFederat
ed method,
with the only
difference
that it takes
as input the
startOffset
and the upper
limit, to
support
paging of
results (i.e.
starting from
result 1 bring
100 results).

10.3.7 Model Mapper Component

10.3.7.1 ModelMapperQuery interface

Table 28 Model Mapper Query Interface

Operation Name Parameter-list Return type Map to
CERIF
entity

Notes

transformQueryExpress
ion

String:
initialQuery
String:
targetSchema

String:
queryExpr

 This method takes as
input a query and a
description of the
target schema and is
responsible for
transforming it so
that it can be
submitted to the
target system. The
method returns the
expression of the
query with respect to
the target format.

It also has a ModelMapperData interface that exposes the functionalities as regards the data
transformation, which is being used from the QueryManager component (whenever it is required to
transform some data - i.e. results- and deliver them in an homogeneous way to the users/agents),
the WorkflowManager and the SystemManager components.

VRE4EIC Page 123 of 125

D3.5 Final Architecture Design PU

10.3.7.2 Model Mapper: ModelMapperData interface

Table 29Model Mapper Data Interface

Operation Name Parameter-list Return type Map to
CERIF
entity

Notes

transformData

String: originalData
String:
targetSchema

String:
transformedData

 This method takes as
input the textual
description of some
data a query and a
description of the
target schema and is
responsible for
transforming them
with respect to the
target schema. The
method returns the
textual description of
the transformed data.

Finally the ModelMapper component has a MappingManager interface that contains all the
functionalities as regards the manipulation of mappings.

10.3.7.3 Model Mapper Component: MappingManager interface
Table 30 Model Mapper Mapping Interface

Operation
Name

Parameter-list Return type Map
to
CERIF
entity

Notes

getMapping

String: mappingID String:
mappingExpressio
n

 The method takes as input
the ID of a mapping and
returns the textual
representation of the
mappings (i.e. as an X3ML
file)

addMapping

String: mappingID
String:
mappingExpressio
n

void The method takes as input
a textual representation of
a mapping (i.e. a X3ML
[X3ML_Framework_IJDL_20
16] file), and an ID and
stores the mapping in the
MappingManager
catalogue.

VRE4EIC Page 124 of 125

D3.5 Final Architecture Design PU

updateMapping

String: mappingID
String:
mappingExpressio
n

void The method takes as input
a textual representation of
a mapping (i.e. a X3ML file),
and an ID and updates an
existing mapping in the
MappingManager
catalogue.

deleteMapping

String: mappingID void The method takes as input
a textual representation of
a mapping (i.e. a X3ML file),
and removes the mapping
from the MappingManager
catalogue.

10.3.8 LDManager Component:

10.3.8.1 LD Manager PublishLDAPI interface

Table 31 LDManager Publish Interface

Operation Name Parameter-list Return type Map to
CERIF
entity

Notes

publishLinkedData String:
publicationSourceUR
I

void This method takes as
input the
publicationSourceURI in
which the data will be
published (i.e a named
graph uri)

Moreover, the published data are exposed through the SPARQL-API interface.

10.3.8.2 LDManager Component: SPARQL-API interface

Table 32 LD Manager Sparql Interface

Operation Name Parameter-list Return type Map to
CERIF
entity

Notes

VRE4EIC Page 125 of 125

D3.5 Final Architecture Design PU

querySPARQL

String:
sparqlQuery
Format:
returnType

String:
sparqlResults

 The method takes as
input a SPARQL query,
and the type of the
returned results (i.e.
XML, JSON, HTML,
etc.), it executes the
query and returns the
results with respect to
the given return type.

10.3.9 AAAI Component interfaces

Table 33 AAAI Interface

Operation Name Parameter-list Return type Map to CERIF
entity

Notes

authenticateUser creds:UserCredential
s

UserProfile UserProfile Delegate to
federated
identity service

authorizedUser creds:UserCredential
s
resourceId:String,
operationType:Strin
g

Boolean Return true if
user in her
current role is
authorized to
perform given
operation on
given resource

billUser creds:UserCredential
s
resourceId:String,
amount:Number

Invoice Bill user for using
amount units of a
given resource

encryptData encryption:Scheme
plainData

EncryptedData Encrypt data
using given
scheme. Note
that in the actual
implementation,
we expect this
function to be
embedded in the
components that
need them

