

VRE4EIC

A Europe-wide Interoperable Virtual Research Environment

to Empower Multidisciplinary Research Communities

and Accelerate Innovation and Collaboration

Deliverable D3.4

Enhanced VREs

Document version: 1.0

VRE4EIC Page 2 of 59

D3.4 Enhanced VREs PU

VRE4EIC DELIVERABLE

Name, title and organisation of the scientific representative of the project's coordinator:
Mr Peter Kunz t: +33 4 92 38 50 10 f: +33 4 92 38 78 22 e: peter.kunz@ercim.eu

GEIE ERCIM, 2004, route des Lucioles, Sophia Antipolis, F-06410 Biot, France
Project website address: http://www.vre4eic.eu/

Project

Grant Agreement number 676247
Project acronym: VRE4EIC
Project title: A Europe-wide Interoperable Virtual Research

Environment to Empower Multidisciplinary
Research Communities and Accelerate Innovation
and Collaboration

Funding Scheme: Research & Innovation Action (RIA)

Date of latest version of DoW against
which the assessment will be made:

31 May 2017 Amended Grant Agreement through
amendment n°AMD-676247-8

Document

Period covered: M1-33
Deliverable number: D3.4
Deliverable title Enhanced VREs
Contractual Date of Delivery: 30.06.2018
Actual Date of Delivery: 30.06.2018
Editor (s): Peter Kunz
Author (s): Carlo Meghini (CNR ISTI)
Reviewer (s): Keith Jeffery (ERCIM)

Cesare Concordia (CNR ISTI)
Luca Trupiano (CNR ISTI)
Theodore Patkos (FORTH ICS)
Nikos Minadakis (FORTH ICS)

Yannis Marketakis (FORTH ICS)
Vangelis Kritsotakis (FORTH ICS)

Daniele Bailo (INGV)
Zhiming Zhao (UvA)

Participant(s): All project partners
Work package no.: 3
Work package title: Architecture, VRE development, integration and

scalability
Work package leader: Carlo Meghini (CNR)
Distribution: PU
Version/Revision: 1.0

Draft/Final: Final
Total number of pages (including
cover):

59

http://www.vre4eic.eu/

VRE4EIC Page 3 of 59

D3.4 Enhanced VREs PU

What is VRE4EIC?

VRE4EIC develops a reference architecture and software components for VREs (Virtual

Research Environments). This e-VRE bridges across existing e-RIs (e-Research Infrastructures)
such as EPOS and ENVRI+, both represented in the project, themselves supported by e-Is (e-
Infrastructures) such as GEANT, EUDAT, PRACE, EGI, OpenAIRE. The e-VRE provides a
comfortable homogeneous interface for users by virtualising access to the
heterogeneous datasets, software services, resources of the e-RIs and also provides

collaboration/communication facilities for users to improve research communication. Finally
it provides access to research management /administrative facilities so that the end-user has

a complete research environment.

Disclaimer

This document contains description of the VRE4EIC project work and findings.

The authors of this document have taken any available measure in order for its content to be
accurate, consistent and lawful. However, neither the project consortium as a whole nor the
individual partners that implicitly or explicitly participated in the creation and publication of
this document hold any responsibility for actions that might occur as a result of using its
content.

This publication has been produced with the assistance of the European Union. The content

of this publication is the sole responsibility of the VRE4EIC consortium and can in no way be
taken to reflect the views of the European Union.

The European Union is established in accordance with the Treaty on European Union
(Maastricht). There are currently 28 Member States of the Union. It is based on the European

Communities and the Member States cooperation in the fields of Common Foreign and
Security Policy and Justice and Home Affairs. The five main institutions of the European Union

are the European Parliament, the Council of Ministers, the European Commission, the Court
of Justice and the Court of Auditors (http://europa.eu/).

VRE4EIC has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 676247.

http://europa.eu/)

VRE4EIC Page 4 of 59

D3.4 Enhanced VREs PU

Table of Contents

1 Introduction ... 6

2 The VRE4EIC technical architecture ... 7

2.1 The e-VRE microservices design principles.. 8

3 Implementing the VRE4EIC technical architecture: the e-VRE prototype 8

3.1 The choreography approach in e-VRE: defining events and messages 9
3.2 The Node Service .. 11

3.2.1 The Node Manager ... 12
3.2.2 The User Manager .. 13
3.2.3 The Communication Bus .. 14

3.2.4 The Node Service: implementation choices and technologies adopted 15
3.2.5 The Node Service: source code, documentation and set up 17

3.3 The e-VRE AAAI implementation in the canonical prototype 17
3.3.1 Security and Trust Components ... 19
3.3.2 The Two-Factor Authentication (2FA) in e-VRE prototype 21

3.3.3 The AAAI: technologies adopted ... 22
3.4 The Metadata Service .. 22

3.4.1 The Metadata Service: implementation choices and technologies adopted 23
3.4.2 Metadata Service: the source code ... 23

3.5 The e-VRE Workflow Service... 24

3.5.1 The Workflow Configurator ... 25
3.5.2 The GUI, the Workflow Executor, the Workflow Repository 26

3.5.3 Workflow Service Implementation description.. 28
3.5.4 Source code, documentation and set up ... 31

3.6 The e-VRE App Service .. 31

4 The VRE4EIC Graphical User Interface .. 32
4.1 Introduction to this section .. 32

4.2 Targeted Objectives of the Design .. 32
4.3 Functional Model ... 33
4.4 Architecture of the VRE4EIC GUI.. 40

4.4.1 Front End .. 41
4.4.2 Back End .. 42

4.5 Interactions of the VRE4EIC GUI with the e-VRE building blocks 43
4.5.1 Node Service .. 43
4.5.2 Metadata Service .. 43

4.6 Technologies used in implementing the VRE4EIC GUI... 43

5 The Enhanced EPOS VRE ... 44

5.1 EPOS Integration within VRE4EIC .. 45
5.1.1 Provision of metadata describing EPOS assets .. 45

5.1.2 Provision of Scientific Background, use case and tools 45
5.1.3 EPOS integration within VRE4EIC - Workflows .. 46

5.2 EPOS enhancement by means of VRE4EIC building blocks.................................... 47

5.2.1 EPOS architecture enhancement .. 47
5.2.2 EPOS functionality enhancement ... 48

5.3 Conclusion of this section.. 50

VRE4EIC Page 5 of 59

D3.4 Enhanced VREs PU

6 The Enhanced ENVRIplus VRE.. 50

6.1 Community catalogue for cross-RI data and services ... 50
6.1.1 Short term: manually setting up a CERIF-based data catalogue 50

6.1.2 Long term: automatically harvesting CERIF records from diverse ENVRI RI
catalogues .. 51

6.2 Cross-RI data and service discovery.. 52
6.3 Cross-RI workflow composition.. 53
6.4 Cross-infrastructure workflow execution and provenance .. 54

7 Conclusions .. 55

8 References .. 55

9 Annexes .. 56
9.1 Using 2FA in e-VRE prototype ... 56

9.2 VRE4EIC GUI implemented functionalities ... 57

VRE4EIC Page 6 of 59

D3.4 Enhanced VREs PU

1 Introduction
This deliverable provides the results of two tasks within WP3 of the VRE4EIC project: Task 3.4

“Integration of Reference VRE and Enhanced Existing VREs” and Task 3.5 “Design and
development of a GUI for eVRE”.

In particular:

 The enhanced VREs are extended implementation of the EPOS and ENVRIplus VREs
which have been obtained by migrating the architectures of these VREs into new
architectures that includes building blocks developed by the VRE4EIC project, in the
context of task 3.3. The resulting architectures provide the involved VREs with
additional functionality that extends their capabilities in significant ways for the
underlying research communities, while at the same time prove the functional and
technical validity of the Reference Architecture developed (D3.1) and implemented by
the project.

 The eVRE GUI provides eVRE with an access point for the human user, thus addressing
the usability of VREs, which is one of the main goals of the project.

In addition, the present deliverable provides the Canonical Reference Prototype (CRP) of the
Reference Architecture, also produced by Task 3.4 of the project by integrating existing
technologies to implement the components of the Reference Architecture. The realization of
the CRP has required the development of a Technical Architecture, which complements the

Reference Architecture by selecting a set of suitable implementation techniques and open-
source components.

The deliverable is structured as follows:

 Section 2 presents the VRE4EIC technical architecture and motivates the choices that
inform it.

 Section 3 describes the CRP by first introducing the general approach followed in the
implementation (the choreography approach) and then by presenting the

implementation of each microservice in the Technical Architecture.

 Sections 4 presents the GUI of eVRE.

 Sections 5 and 6 describe the two enhanced VREs, EPOS and ENVRIplus, respectively.

 Section 7 concludes.

 The Annex reports useful information from deliverable 3.3: how 2-factor
authentication works, and the complete list of functionalities implemented by the GUI,
thereby establishing a link between the implementation of the CRP described in this
deliverable and that of the building blocks described in D3.3.

It must be said that each of the four technical realizations presented in this deliverable is an
outstanding achievement in its own right, especially with respect to the amount of resources

used for them, time included. A key factor to these achievements has been the principled
methodology followed throughout the project, consisting in the appropriate combination of
the classical top-down approach in system engineering with the continuous interaction with
the EPOS and the ENVRIplus users and developers, which has guided the VRE4EIC software

architects and developers.

VRE4EIC Page 7 of 59

D3.4 Enhanced VREs PU

2 The VRE4EIC technical architecture
The key point in the derivation of the technical architecture, has been the VRE4EIC non-

functional requirements defined in the project proposal:

1. The developed Virtual Research Environments must be a dynamic system: it should

reuse and integrate existing VRE tools, services, standardized building blocks and
workflows where appropriate [vre4eic], and develop new innovative ones where

needed

2. The e-VRE should be applicable to different multidisciplinary domains, i.e. it can be
potentially used in every research domain.

3. The e-VRE functionalities should be exposed as services in a standardized way to
enable developers to easily use them to develop new applications.

4. The e-VRE must provide innovative standard software services to be retro-fitted to
existing VREs to enhance them for their own domain purposes and for interoperability.

From the architectural point of view the above requirements mean that the e-VRE system
must be easily expandable (by adding or replacing software components), highly modular
(every building block should be independently deployable) and capable of supporting
technology heterogeneity. We decided to adopt the Microservices approach for our technical

architecture, since the two key concepts of Microservices architecture [Newman] perfectly fits
the above requirements:

 loose coupling: every service knows as little as it needs to about the components with
which it cooperates; this enables the Microservices to be independently deployable on

existing VREs or replaceable in specific scientific domains

 high cohesion: components with related behavior stand together (i.e., related logic is

kept in one service); changing the technology used to implement a Microservice does
not affect other building blocks.

VRE4EIC Page 8 of 59

D3.4 Enhanced VREs PU

2.1 The e-VRE microservices design principles

We adopted a number of design principles to define the Microservices in our architecture:

 Use of asynchronous communications
 Maintain distributed process management in a single service by design

 Avoid service coupling because of component dependencies
 Efficiently manage integration with third-party software.

 Efficiently manage coexistence of different endpoints.

The Deliverable 3.3 [D 33] describes in details the solutions adopted at design level to
implement these principles, in the next section an overall descriptions of the implementation

of these principles is presented and the picture above shows which microservices has been
created during this design.

3 Implementing the VRE4EIC technical
architecture: the e-VRE prototype

This part of the document describes one possible implementation of the architecture designed
in Deliverable 3.4. In the following sections are described: i) the overall approach followed to
implement the functionalities of each Microservice defined in the technical architecture, ii)
the technologies and standards adopted in each case and iii) the issues fixed and still opened.

VRE4EIC Page 9 of 59

D3.4 Enhanced VREs PU

In some cases, the overall instructions to install and run the microservices are described,
however the complete installation guide for the e-VRE canonical prototype will be published

on the VRE4EIC site. In the following will refer to e-VRE microservices as ‘building blocks’.

3.1 The choreography approach in e-VRE: defining events and

messages

As described in Deliverable 3.3, the analysis of non-functional requirements has lead us to

adopt distribution of control avoiding a central point of control in e-VRE. Our choice therefore
went for the Choreography approach [D 33].

To implement this approach, an event-driven communication model has been adopted for
interactions of building blocks. The first step for the implementation of this principle is the
definition of the set of events that occurs in a system. According to [RUSS] “Events represent
full, complete, self-describing and immutable Facts about the system”, and when creating a
microservices architecture it is important to clearly define “which events should a service
process” and “which events will a service emit”.

For every e-VRE microservice (building block) we have individuated the set of events it can
emit by considering the list of the Generalized Functions (GF) extracted from the use cases [D
31], every completed GF produce a specific event emitted by the building block that has

executed it; consequently, the building blocks that process the event will be those building

blocks that could be affected by the GF executed. Since we tried to implement and maintain
the distributed process management in a single service principle by design [D 33], most of the

VRE4EIC Page 10 of 59

D3.4 Enhanced VREs PU

events don’t have any side effect to other building blocks and are emitted just to be processed
for log reasons. However there are some special events that need to be processed by other

building blocks: the most important of this events is the event generated by Fun21: Agent
Authentication that must be processed by every other building blocks to guarantee the

implementation of the Fun22: Continuous Access.

Events are communicated by microservices exchanging messages. To guarantee modularity, a
microservice should not require any additional context, or dependencies on the in-memory
session state to process a message representing an event; it must process the message and
reacts accordingly if needed, whiteout further information. The messages defined in e-VRE
will be described in the section related to Node Service.

The event driven model in e-VRE is implemented using asynchronous communication. An
asynchronous communication interaction is not blocking (the microservice initiating the
communication does not wait for answer) and is highly decoupled (a producer of a message
does not know who is going to react to its message). From an architectural point of view an

event-driven interaction model reduces communication latency and improves scalability and
flexibility of e-VRE (Requirements 1, 2, 4 above): for instance new publishers or subscribers

can be added to (or can be removed from) processing an event message without other
Microservices need to know it.

In e-VRE architecture the stream of events uses a Communication Bus that is implemented as
a set of asynchronous communication channels, one for every category of events , managed
by a specific component, the bus manager checks the producers/consumers credentials to
permit a building block to execute or produce/consume operations.

Details of the Communication Bus implementation will be presented in the related sections.

VRE4EIC Page 11 of 59

D3.4 Enhanced VREs PU

3.2 The Node Service

Figure 1 The Node Service UML Component Diagram

The Node Service implements all functionalities related to the User Profile management and
e-VRE system administration. The figure 1 shows an UML component diagram which depicts
the interaction with other services needed to implement its business logic.

VRE4EIC Page 12 of 59

D3.4 Enhanced VREs PU

The e-VRE Node Service functionalities are implemented by 4 main software components:

 a GUI that enables the administrator to monitor the system and define the
configuration

 the User Manager that manages user profiles and provide authentication facilities

 the Communication Bus that is used as communication infrastructure for the e-VRE

Microservices interaction.

 the Node Manager which implements the functionalities to manage the e-VRE system

3.2.1 The Node Manager

In a microservice system, services are typically distributed in a server infrastructure (created

using containers and VM images). In such an infrastructure microservices may scale up and
down based upon certain predefined conditions and the address of a microservice may not be

known until the service is deployed and ready to be used.

The Node Manager implements the functionalities to manage a distributed configuration
service, a synchronization service, and a naming registry.

Essentially, the Node Manager role is to enable the set of autonomous e-VRE microservices to
act as a coherent single system.

Figure 2 Partial state diagram of e-VRE building blocks life-cycle

VRE4EIC Page 13 of 59

D3.4 Enhanced VREs PU

Each e-VRE building block, knows the address of the Node Service and during the start phase
of its life-cycle registers with the Node Manager component. During the registration, the

building block:

 provides information about itself, such as the endpoint address.

 gets information it may need to execute its business logic: the address of other building
blocks, credentials to access remote resources, certificates to implement encrypted
communications etc.

At runtime, a building block can interact with the Node Manager, for instance to find out the
location of other e-VRE building blocks or to communicate significant changes in its state.

When the building block stops, it communicates with Node Manager to inform that it will be
no longer available.

The Node Manager stores locally the information about the status of the e-VRE system and
implements a policy for load balancing.

According to our architecture design, an e-VRE system is made by the set of running building
blocks coordinated by a specific Node Manager.

3.2.2 The User Manager

The User Manager building block implements the management of User profiles containing
information about the users that registers on e-VRE and wraps the authentication

functionalities of the AAAI building block.

Figure 3 The User Manager class

The functionalities of the User Manager building block are mainly used by external agents to
register/authenticate in the e-VRE systems.

VRE4EIC Page 14 of 59

D3.4 Enhanced VREs PU

Figure 4 Web Services entry points for e-VRE User Manager

3.2.3 The Communication Bus

The Communication Bus is responsible for managing the asynchronous interactions
implementing the evet driven model in e-VRE. It acts as a Message Oriented Middleware
(MOM) and provides to e-VRE building blocks functionalities to exchange messages.

Class diagram of a subset of e-VRE Messages

VRE4EIC Page 15 of 59

D3.4 Enhanced VREs PU

Messages describe events that are relevant for the implementation of the business logic of
the system, the image above shows a subset of the messages implemented in e-VRE.

Following the MOM principles, the e-VRE Communication Bus is used to create a number of
communication channels, each one containing a specific kind of messages.

When a building block starts, it gets information about the system configuration from the

Node Manager, including the list of active communication channels. It may subscribe to one
or more channels, and may also ask the Communication Bus to create some channels. During

its life-cycle the building block will be able to produce and consume (according to its
permissions) messages on the channels it has subscribed.

3.2.4 The Node Service: implementation choices and technologies adopted

The e-VRE Web Services component has been implemented in Java, the entry points of this
component are described and documented in details in the prototype site.

VRE4EIC Page 16 of 59

D3.4 Enhanced VREs PU

The same approach has been adopted to develop the User Manager component, a Java library
has been built using MongoDB as persistence layer.

To implement the Node Manager in the e-VRE prototype the Apache ZooKeeper framework1
has been used. Zookeeper provides functionalities to maintain status type information in
memory and keeps a copy of the state of the entire system and persists this information in
local log files. In e-VRE, every building block creates a znode (a file that persists in memory on
the Node Manager server). The znode can be updated by building blocks that have permissions
to do it, and any other building blocks in the e-VRE can register with the Node Manager to be
informed of changes to that znode (i.e. to “watch” a specific znode).

In order to help developers to implement the logic described for an e-VRE building block we
have created an helper class (a sort of Node Manager client), called NodeLinker class. The
current release of this class is shown in the image below:

Figure 5 The NodeLinker class

The Node Linker class needs to be initialized with the address of the Node Manager and the
credentials, when instantiated it automatically sends to the Node Manager the address and

the name of the building block and downloads a number of properties that can be used by the
building block.

This class will be upgraded in the next release to include also the exchange of security
certificates.

Finally, the Communication Bus in the e-VRE prototype is based on Apache ActiveMQ 2 , a
framework implementing MOM principles; it is used as communication layer by a Java API

developed by VRE4EIC team. In particular the code developed for Communication Bus add to
ActiveMQ a security layer to encrypt and digitally sign messages exchanged, details of this
security layer have been reported in the Deliverable 5.4 of the VRE4EIC project and will be
also explained in the section related to AAAI building block.

1 https://zookeeper.apache.org
2 http://activemq.apache.org

VRE4EIC Page 17 of 59

D3.4 Enhanced VREs PU

3.2.5 The Node Service: source code, documentation and set up

The java code is published on GitHub, and can be downloaded at the following URL:

 https://GitHub.com/vre4eic/NodeService

The Node Service has been developed as a Java Maven project, the code is separate in two
main packages:

 eu.vre4eic.evre.nodeservice where there is the code that implements the
functionalities of the Node Service building block.

 eu.vre4eic.evre.core where we implement the code implementing functionalities
commons to all building blocks. In particular this package contains the Java classes

implementing messages and the classes implementing Node Manager clients. This
development choice has been taken in order to create a common API that can be used

by all building blocks when interacting with each other or with the infrastructure.
These API are distributed as Java archive (jar)

The java classes are documented in details using Javadoc, the complete documentation can
be read here:

http://v4e-lab.isti.cnr.it:8080/NodeService/doc/index.html

For the documentation of e-VRE Web Services we adopted Swagger, a software framework
that enables developer to describe the API. The swagger documentation of the e-VRE Web

Services is here:

 http://v4e-lab.isti.cnr.it:8080/NodeService/swagger-ui.html#

To set up the Node Service MongoDB and ActiveMQ are required in your environment.

At the time of the release of this deliverable the only way to install a Node Service is to clone
or download the source code, then manually change property values in the file:

[your_dir]/NodeManager/src/main/resources/Settings.properties

In particular the MongoDB and ActiveMQ address and credentials must be set. When the file

Settings.properties has been updated a Web ARchive (WAR) must be created using maven and
deployed on an application container.

Before the end of the project we will create a distribution for e-VRE.

3.3 The e-VRE AAAI implementation in the canonical prototype

To implement the functionalities related to authorization/authentication in e-VRE prototype
we have delegate to the User Manager the role of partial wrapper of the AAAI functionalities;
this implementation pattern enables e-VRE prototype to be independent from the framework
used to implement the AAAI. In particular the User Manager wraps the interactions between

the AAAI framework and the external agents to execute two crucial operations: i) store
credentials of user profiles created in e-VRE prototype and ii) check credentials validity when
a user logs in the system.

https://github.com/vre4eic/NodeService
http://v4e-lab.isti.cnr.it:8080/NodeService/doc/index.html
http://v4e-lab.isti.cnr.it:8080/NodeService/swagger-ui.html

VRE4EIC Page 18 of 59

D3.4 Enhanced VREs PU

As explained in Deliverable 3.3, in order to improve security we decided to implement here a
synchronous communication: the User Manager interacts with AAAI using a synchronous ,

encrypted channel.

Figure 6 Login in the system using User Manager

The image above shows how authentication occurs and identity propagates when an external
agent authenticates using the User Manager:

1. The client sends the credentials using a e-VRE WS entry point

2. the User Manager forwards the credentials to AAAI and waits for answer

3. the AAAI verify that credentials are valid and returns a token

4. the User Manager creates an e-VRE Authentication Message (explained in next

sections of this deliverable) that contains the token and sends this message
asynchronously via the Communication Bus

5. the User manager sends an answer to the client containing the token.

The client will use the token in every interaction with e-VRE building blocks for instance when

executing queries on the catalogue via the Metadata Service. The figure 6 shows the UML
sequence diagram describing this use case.

VRE4EIC Page 19 of 59

D3.4 Enhanced VREs PU

Figure 7 Login on e-VRE prototype and execute query

The main security/trust issue in this use case is that the Metadata Manager needs to know
that the token it receives asynchronously has been created by an e-VRE building block that has
the authority of creating it, and that it has not been tampered with. The solution adopted to
solve this issue has been to sign and encrypt tokens and messages exchanged by e-VRE
building blocks. In the use case the AAAI creates a token, encrypts it, and then returns it to the
Node Service (as explained this happens on a secure encrypted channel), the Node Service
creates an AuthenticationMessage, signs it and send the message asynchronously to e-VRE
building blocks. When the Metadata Service receives the token: checks the signature, if it is a

valid signature, decrypts the token and stores it locally.

Every e-VRE building block signs messages before publishing them in the Communication Bus
channels and subscribers validate messages signature before consuming them.

To implement token encryptions and message signing, we have used the JSON Web Token

(JWT) standard3. In the e-VRE prototype, JWT encryption and signature are based on shared
private keys, exchanged by building blocks via Node Manager, a more secure (and efficient)
Public Key Infrastructure will be implemented in next release.

3.3.1 Security and Trust Components

Some key issues discussed in Deliverable D5.3 and D5.4 around Security and Trust require
solutions that are either too domain- or platform-specific, or insufficiently standardized to be
incorporated in the reference architecture or the canonical reference prototype. As a use case

3 The JWT is “an open standard […] that defines a compact and self-contained way for securely transmitting

information between parties as a JSON object. This information can be verified and trusted because it is digitally

signed. JWTs can be signed using a secret (with the HMAC algorithm) or a public/private key pair using RSA”.

Info: https://jwt.io/introduction/

VRE4EIC Page 20 of 59

D3.4 Enhanced VREs PU

in dealing with security and trust issues in a digital humanities use case, we explored user
interface components to support a collaborative, explorative and interactive web front-end

that can still produce transparent and reproducible results on (privacy) sensitive data. These
components are also used to gain practical experience in connecting e-VREs to other

(inter)federated authorization infrastructures that currently under development by the
VRE4EIC project participating in a pilot 4 managed by the Dutch National Research and

Education Network (NREN) organization SURFnet.

Federated Authentication and Authorization Pilot

The VRE4EIC project participation in the pilot is to gain practical experiences with existing

international standards for federated authentication (e.g. identity management) and (inter)
federations such as eduGAIN, and to explore the landscape around federated authorization

that is currently developing in projects such as AARC2. We collaborate since May 2018 in a
specific pilot5 by SURFnet where several services are bundled in a virtual Science Collaboration

Zone, and are particularly interested in the federated attribute management functionality. It
allows us to explore the distributed management of user attributes stored at the Identity

Provider, the federated infrastructure and/or the eVRE AAAI service. The Pilot has just started
and a first working prototype has been demonstrated at an internal project meeting. We will
fully report on this in deliverable D3.5

4 https://wiki.surfnet.nl/display/SCZ/Pilot+partners
5 Image taken from:

https://wiki.surfnet.nl/download/attachments/57183089/Science%20Collab%20Zone%20simplified.png?version

=2&modificationDate=1524202958775&api=v2

https://wiki.surfnet.nl/display/SCZ/Pilot+partners
https://wiki.surfnet.nl/download/attachments/57183089/Science%20Collab%20Zone%20simplified.png
https://wiki.surfnet.nl/download/attachments/57183089/Science%20Collab%20Zone%20simplified.png

VRE4EIC Page 21 of 59

D3.4 Enhanced VREs PU

3.3.1.1 Collaborative executable notebook for transparent data science

To demonstrate trust-specific components a public demonstrator has been developed 6 and made
available as a web service. This web service demonstrates the use of the SWISH datalab as a
prototype of a transparent and collaborative executable notebook user interface for e-RIs and
e-VREs platforms. The demo contains all the code necessary to reproduce the tables, figures
and other computational results of an open access Web Science 2018 paper: “Using the Web
of Data to Study Gender Differences in Online Knowledge Sources: the Case of the European
Parliament”. It uses a collaborative notebook interfaces integrating the complete statistical
analysis code (in R) for all results presented in the paper, and the complete declarative data
pre-processing and data modeling code (in Prolog). This means that all computational steps
leading to the resulted on in the paper are open for inspection and review. In addition, it offers
permalinks for all interactive results obtained from the system, which means that all final and
intermediary steps can be downloaded in the future, even if the underlying code in the
collaborative notebook is changed by the researcher or her colleagues.

3.3.1.2 Technical details of the release

All software and code needed to reproduce the public web demonstrator has been archived
for long term storage at Zenodo under DOI https://doi.org/10.5281/zenodo.1232929. To project
this code against dependencies on operating-specific details and changes in third-party
software, a self-contained virtual machine image has been published for long term storage at

https://doi.org/10.5281/zenodo.1237673. All source code of the software is available on the
VRE4EIC GitHub account (https://GitHub.com/vre4eic/websci2018-reproducibility-pack) and as
Docker containers (https://hub.docker.com/u/vre4eic/).

3.3.2 The Two-Factor Authentication (2FA) in e-VRE prototype

The e-VRE prototype User Manager implements a two-factor authentication (2FA) method i.e.
a method using a combination of two different factors to authenticate a user. The following

sequence diagram shows the building blocks involved to implement this functionality.

6 http://vre4eic.project.cwi.nl/gender/

https://doi.org/10.5281/zenodo.1232929
https://doi.org/10.5281/zenodo.1237673
https://github.com/vre4eic/websci2018-reproducibility-pack
https://hub.docker.com/u/vre4eic/
http://vre4eic.project.cwi.nl/gender/

VRE4EIC Page 22 of 59

D3.4 Enhanced VREs PU

Figure 8 2FA in e-VRE prototype

In e-VRE prototype the channel used to communicate to the user the second factor is a
Telegram Channel, a detailed description of how a user can use the 2FA feature to
authenticate on e-VRE prototype is in VRE4EIC Deliverable 3.3 [D 33], in particular in sections
6.1 and 5.4.

The component integrating the telegram Framework is called evre-TGBotAuthenticator, the
source code of this component is available here:

https://GitHub.com/vre4eic/TelegramBots

3.3.3 The AAAI: technologies adopted

The Unity IDM7 is used to implement AAAI functionalities for federated identity in the e-VRE
prototype.

3.4 The Metadata Service

It is the e-VRE building block responsible for storing and managing resource catalogues. These
functionalities are provided by exploiting various components (i.e. MetadataManager,
DataModelMapper, etc.).

7 http://www.unity-idm.eu/

http://www.unity-idm.eu/

VRE4EIC Page 23 of 59

D3.4 Enhanced VREs PU

3.4.1 The Metadata Service: implementation choices and technologies adopted

During the design phase of the project it has been decided that this building block should have
used a triple-store as repository. Initially, Blazegraph8 was installed as the Metadata Service
repository. However, during the e-VRE prototype development, it was noticed that in many
cases Blazegraph had performance issues. In addition to that, Blazegraph’s development itself,
seems to be inactive for the last couple years. For those reasons it was decided to seek for an
alternative triple-store, ending up with adopting the Virtuoso Universal Server9. The Virtuoso
Universal Server merges the capabilities offered by a hybrid database engine and by a
middleware that combines the functionality of a traditional RDBMS, ORDBMS, RDFStore,
virtual database, web application server and file server. It is in fact a single threaded server
process that supports multiple protocols.

The following standard Web and Internet protocols have been implemented in Virtuoso:
HTTP, HTTPs, WebDav, SOAP, UDDI, SPARQL and SPARUL. In addition, concerning the
development of database-based applications and the integration of systems, Virtuoso has

implemented a wide variety of industry standard data access APIs, such as ODBC, JDBC, OLE
DB and ADO .NET. Virtuoso is made up of various server and client components, which enable

the communication of a local or remote Virtuoso server, such as the Conductor, which is Web
based Database Administration User Interface, and ISQL and ISQLO utilities. To this end, the

Virtuoso Universal Server can be exploited to produce a clustered-based system of RDFStores.

In addition, there is a specific version of this server, which can be deployed on the Amazon
Cloud. Concerning the specific characteristics of Virtuoso that are of interest for e-VRE
prototype, it can be highlighted that Virtuoso not only allows the management of RDF (linked-
data) but it enables their querying through the SPARQL language. The same language (actually
SPARUL) can be exploited for the updating of the linked-data.

3.4.2 Metadata Service: the source code

MetadataService has been developed as a JAVA maven project. It consists of different
components, therefore it is important to separate the development spaces for these

components. All the different components are placed under the eu.vre4eic.evre package.
After that follows another package that groups together the resources of a particular

component (i.e. eu.vre4eic.evre.metadatamanager contains all the resources of the
corresponding component).

For each component we use different packages for grouping together resources that are used
for a particular reason. More specifically we use the following packages:

 api: for adding the interfaces of the components. These are the contractual interfaces
that are also visible from other components.

 impl: for adding the actual implementation (or different implementations) of the
interfaces that are found under the api package.

 model: for adding the structural components that are required (i.e. POJOs)

 exceptions: for adding the corresponding exceptions-related resources

8 https://www.blazegraph.com
9 https://virtuoso.openlinksw.com/universal-server/

VRE4EIC Page 24 of 59

D3.4 Enhanced VREs PU

 test: for adding the resources that are needed for testing the components

Furthermore for grouping the resources that are exploited throughout all the components we
have created a commons package (found under eu.vre4eic.evre.commons)

The Javadoc of the code developed can be found here:

http://139.91.183.70/apidocs/

The swagger documentation of the e-VRE Web Services is here:

 https://app.swaggerhub.com/apis/rousakis/ld-services/1.0.0

3.5 The e-VRE Workflow Service

In the e-VRE Reference Architecture, the Workflow Manager (WM) component is responsible

for the management of business processes and scientific workflows. To do this, the WM
interacts with other components, for instance it uses the Metadata Manager to get

information to build workflows and to store them, and the Query Manager to execute
distributed queries. The figure below shows the UML component diagram describing the

complete set of interactions of Workflow Manager with the components of the Reference
Architecture.

http://139.91.183.70/apidocs/
https://app.swaggerhub.com/apis/rousakis/ld-services/1.0.0

VRE4EIC Page 25 of 59

D3.4 Enhanced VREs PU

Figure 9 The Workflow Manager UML Component diagram

In the technical architecture, the functionalities of the Workflow Manager are implemented

by the Workflow Service [D 33]. These functionalities have been partitioned in three groups,
each one implemented by a different sub-component:

 The Workflow Configurator provides functionalities to build/edit/store workflows, and
to control and monitor their executions

 The Workflow Executor manages the execution of workflows, including data staging, it

may interact with the App Manager to execute tasks.

 The Workflow Repository provides functionalities to store and retrieve workflows

descriptions to/from the Metadata Manager, and to publish them using the LD
Manager.

Moreover we have added to the Workflow Service also the components of the Interoperability
Manager: e-VRE WS, adapter and MOM.

Figure 10 The Workflow Service

3.5.1 The Workflow Configurator

The main functionality of the Workflow Configurator is to access the VRE4EIC catalogue to:

VRE4EIC Page 26 of 59

D3.4 Enhanced VREs PU

 search for resources that may be used in building a Workflow, for instance Web
services descriptions or references to external datasets, etc.

 save descriptions of web services, so these become e-VRE resources and can be
searched and reused\

The UML sequence diagram in Figure 10, describes the interactions between e-VRE

components in a use case where the Workflow Configurator search for WADL descriptions of
Web Services.

Figure 11 Search the catalogue for Web Services descriptions

The Workflow Configurator interacts directly with the Metadata Manager (via the Metadata
Service e-VRE WS, not reported in the diagram), and to do this it needs to know the reference
(the URL) of the Metadata Service. As explained in the section describing the Node Service,
the Workflow Service obtains the reference of the Metadata Service by querying the Node

Manager during its start-up phase. However, the reference to Metadata Service can be

obtained also at runtime, this means that the Node Manager may implement a policy for load
balancing when more Metadata Services are part of an e-VRE system.

3.5.2 The GUI, the Workflow Executor, the Workflow Repository

The Workflow Executor and the Workflow Repository components of the Workflow Service

must implement a number of user requirements, as described in Deliverable 3.1, in particular
the requirements: PRQ28 Data Processing Control, ORQ2 Processing Parallelization, and ORQ4

Data Compartmentalization [D 31]. The GUI should provide to users the possibilities of create
workflows, save them in the Workflow Repository and execute workflows in the Workflow

Executor.

VRE4EIC Page 27 of 59

D3.4 Enhanced VREs PU

The effort to obtain a complete implementation of these components exceeds the resources
available in the project. For this reason, to implement the required functionalities we decided

to investigate the possibility to integrate an existing workflow engine in e-VRE.

This starting point of our investigation has been a detailed analysis [HOLL] on state of art in
the field of workflow engines. The following table summarizes results of the work:

A number of tests has been made on the above frameworks and two possible choices have
been considered: Kepler and Apache Taverna. The main features of these two frameworks are

compared in the table below.

Apache Taverna Kepler

Domain-independent Domain-independent

GUI for workflow composition GUI for workflow composition

Simple Conceptual Unified Flow Language
(SCUFL2)

Uniform access to computational
components through actor model.

Enable to share and manipulate workflows
outside the editor.

Workflows are saved as XML files

Dataflow-oriented model of execution and
support loops

Many different models of computation are
possible, focus on actor-oriented

VRE4EIC Page 28 of 59

D3.4 Enhanced VREs PU

Support for RESTful web services & OGC

service consumption

Support for the use of Cloud in workflow
execution

Support for the use of Cloud in workflow
execution

https://taverna.incubator.apache.org https://kepler-project.org/

LGPL license BSD License

We decided to use Apache Taverna for the prototype implementation. From the
implementation point of view the main reasons for this choice have been that it enables third
part developers to implement the web services and local services integration using Java
related technologies; additionally it provides monitoring tools that can be easily integrated in

e-VRE GUI, in particular the Taverna Workbench. The Taverna Workbench, a tool that enable
users to create, manage and store workflows, has been designed and developed as a plug-in

platform, this means that its functionalities can be easily extended by developing and installing
new plug-ins. A specific plugin for e-VRE has been developed, it enables Taverna Workbench

to interact with e-VRE. Details of the e-VRE plug-in are described in the following sections.

3.5.3 Workflow Service Implementation description

This section describes the implementation of the Workflow Service in terms of the three main
actions of the Fun15: Workflow Enactment general function that is implemented by the
Workflow Service [D 31].

3.5.3.1 Workflow creation

The workflow is created using the Taverna Workbench which access the VRE4EIC catalogue to
get Web Services descriptions and use these descriptions to create workflows. The main
responsible for this activity in e-VRE is the Workflow Configurator: it interacts with Metadata

Manager to get the Web Services descriptions with AAAI to check
authentication/authorization, with the Data Model Mapper to implement the transformation
of CERIF records into a format accepted by Taverna.

To enable the Taverna Workbench to interact with the e-VRE we have developed a plug in

module that uses the e-VRE WS provided by the Workflow Configurator. The plug-in is
published and can be installed by any user using Taverna Workbench (release 2.5).

https://taverna.incubator.apache.org/

VRE4EIC Page 29 of 59

D3.4 Enhanced VREs PU

Figure 12 Workflow Creation using e-VRE-Taverna plugin

3.5.3.2 Workflow storage

When a workflow is created:

 It is stored in the local Apache Taverna repository,

 A WSDL document describing the workflow is created by e-VRE-Taverna plugin.

 The WSDL document is consumed by the Workflow Configurator of e-VRE, and passed

onto the Data Model Mapper, which transforms it into a CERIF Service description. The
so obtained description is stored in the Metadata Manager (see Figure below).

From this point on, the workflow can be discovered and invoked as any other service whose
description is stored in the e-VRE Catalogue.

VRE4EIC Page 30 of 59

D3.4 Enhanced VREs PU

Figure 13 Storing a workflow description in the e-VRE Catalogue

3.5.3.3 Workflow execution

The execution of a number of predefined workflows can be launched by the user from the e-
VRE GUI. The GUI captures the input parameters of the workflows (via an HTML form, or
similar) and demands the execution to the App Manager of e-VRE. The App Manager, in turn,
will interact with a defined Taverna server to execute the workflow. The result of the workflow
is returned by the Taverna server to the App Manager, and from the App Manager to the GUI.

VRE4EIC Page 31 of 59

D3.4 Enhanced VREs PU

Figure 14 Executing a Workflow

3.5.4 Source code, documentation and set up

The java code of the Workflow Service is published on GitHub, and can be downloaded at the
following URL:

 https://GitHub.com/vre4eic/WorkflowService

The Workflow Service has been developed as a Java Maven project, at the moment, it only
contains the source code of the Workflow Configurator.

The documentation of e-VRE Web Services is here:

 http://v4e-lab.isti.cnr.it:8080/WorkflowService/swagger-ui.html#/

The eVRE-Taverna plugin source code is available here:

https://GitHub.com/vre4eic/eVRETaverna

The Readme.md file on GitHub repository contains instructions for the set-up of this building
block and of the e-VRE Taverna plugin.

3.6 The e-VRE App Service

The goal of this building block is to implement the functionalities of the App Manager
conceptual component: enable external applications to be embedded and used into the e-VRE

system (see Deliverable 3.1 [D 31]). The App Manager is a crucial component for e-VRE, it
should be implemented as a lightweight, unobtrusive software module that interacts with

external applications to track their lifecycle and their usage.

Creating a generic App Manager, able to automatically manage lifecycle and usage for every
possible external application embedded in the e-VRE, is not feasible: a plan has been defined

in the design phase to consider the main standards for this purpose and to proceed
implementing the App Service for these standards: the Servlet level 3 specification has been

adopted as first candidate.

However, the e-VRE canonical prototype embeds two external software frameworks with a

different integration technologies: the Telegram framework for notifications and Two Factor
Authentication (2FA) using the Telegram API and the Taverna Workflow Engine, for workflow

management GUI and execution using the plug-in platform provided by Taverna Workbench.

As described in the correspondent sections we have created two specific components each
one running inside the e-VRE system and interacting with e-VRE building blocks using the
Communication Bus.

The main role of the App Manager in e-VRE prototype is to consume messages sent by these
components to keep a log of states transitions and to produce messages that are consumed
by these two components, each one reacting according to its business logic.

https://github.com/vre4eic/NodeService

VRE4EIC Page 32 of 59

D3.4 Enhanced VREs PU

4 The VRE4EIC Graphical User Interface

This section describes the implementation of a GUI for the VRE4EIC Reference Architecture.
In particular this GUI facilitates the exploration, discovery and management of the metadata

describing resources contained in the VRE4EIC catalogue. It incorporates a multitude of
features on top of an intuitive and user friendly environment, in order for both novice and

expert users to execute complex queries. The platform is agnostic to the underlying
conceptual model, yet it can be configured to take advantage of the main concepts designed.

4.1 Introduction to this section

The publishing of structured and semantically enriched data is changing traditional models of
conducting business and research. Modern science in particular is becoming more
collaborative and multidisciplinary, taking advantage of the plethora of data being produced
by groups with diverse scientific backgrounds. So called Virtual Research Environments (VREs)
aim to promote this scheme, overcoming physical or semantic barriers, and facilitating
researchers from diverse fields to exchange data and resources, decoupling science from ICT.

For such an interoperability to be achieved, and considering the heterogeneity in scope,
features and technologies, various challenges are faced from the technical, semantic and legal
standpoint. One major goal is the generation of high level ontologies with rich metadata that
are easily explored by researchers.

4.2 Targeted Objectives of the Design

This section describes the design, architecture and implementation of the VRE4EIC Metadata
Portal, a fully functional platform that facilitates the exploration, discovery and management
of semantic metadata for both novice and expert users who wish to execute complex queries.
The platform, provides an intuitive, user friendly environment that is highly configurable,
making it appropriate for various domains, still being agnostic of the underlying conceptual
model.

The purpose of the VRE4EIC Metadata Portal is to provide a user friendly environment to all
VRE4EIC users for the search, management and import of Metadata, contained in certain VREs
and RIs. This is achieved through the appropriate Graphical User Interface (GUI) through which
end users can take advantage of the Node and Metadata Services.

The portal does not only aim at offering (another) simple query interface for providing access
to the underlying metadata, hiding the complexity of writing expressive SPARQL queries.
Although the look'n'feel resembles similar query building systems with the goal of reducing
the learning curve for the novice user, the features incorporated are based on a thorough
analysis of the requirements of existing VREs and Research Infrastructures (RIs), offering a
repertoire of solutions for various beneficiaries. Overall, the goal is to support both

 Query writing for the expert, exploiting the capacity of the underlying conceptual
models and gathering best practices from similar systems,

 Discovery of metadata (exploratory search) for the novice user, to help researchers
search across domains and data that they are not familiar with, guiding them in the

process of creating a query.

VRE4EIC Page 33 of 59

D3.4 Enhanced VREs PU

4.3 Functional Model

The current implementation offers a metadata catalogue containing metadata from affiliated
RIs. In short, the main key features of the platform are described in the following paragraphs.

One key characteristic of the portal is that it dynamically executes sub-queries and presents

partial results on-the-fly, while the user builds the query. The goal is twofold. On the one hand,
it helps exploration by presenting results and allowing end users to limit the scope of the query

and, on the other hand, it prevents from executing meaningless queries that return no results.
This is achieved by transparently altering the options available during the query building

process, eliminating choices that can lead to an empty search space.

The platform offers a combination of different ways for searching relevant metadata within

the same query. It enables the user to compose queries using keyword search, entity-based
search, time range-queries, filter-based search and geo-spatial search through an interactive

map.

Filter-based search occurs based on an intuitive interaction model and may involve
conjunctive and disjunctive nested queries. Options to limit the depth, the degree and the
regular expression usage (AND/OR), are available, simplifying the excessive use of nested
filters.

VRE4EIC Page 34 of 59

D3.4 Enhanced VREs PU

Figure 15 Applying one filter on the target entity and another one on the related entity

Geo-spatial queries are constructed with the help of an interactive map, offering most of the
functionalities that one expects to find in similar systems, such as searching by toponyms or
geographical regions or selecting specific instances to be included in the query etc.

VRE4EIC Page 35 of 59

D3.4 Enhanced VREs PU

Figure 16 Setting geographical region and selecting instances by using the interactive map

The platform also gives users the ability to store queries for later use. This is a handy option,
enabling the retrieval of complex queries that can be used as templates for constructing
competency queries with multiple filters or for making minor adaptations to complex
exploration tasks.

VRE4EIC Page 36 of 59

D3.4 Enhanced VREs PU

Figure 17 List of queries stored into user’s favorites

After executing a query, the results can be examined through an internal resolver, allowing
simple navigation from any instance of the targeted entity to any of the instances of the
related entities. In that way, end users can even continue their discovery after the results are
retrieved.

VRE4EIC Page 37 of 59

D3.4 Enhanced VREs PU

Figure 18 Navigating through results

The platform provides a multi-factor authentication mechanism for granting access to the
users. This mechanism requires users to present two pieces of evidence, which are their
regular credentials and a code sent to the “Telegram Messenger” account, they possess. This
compartment also provides Role Based Access Control (RBAC), ensuring that users actions are
regulated according their knowledge background determined through their user roles.

VRE4EIC Page 38 of 59

D3.4 Enhanced VREs PU

Figure 19 Login using two-factor authentication

The platform allows data import from a variety of RDF file formats on either existing or new
defined graphs. The process is as simple as a drag & drop and supports multiple file upload in
a single step. During this process, the system acquires any available user-profiling material and
uses it as extra provenance information to accompany the imported data. This provenance
information is important for knowing who has import what and where.

VRE4EIC Page 39 of 59

D3.4 Enhanced VREs PU

Figure 20 Importing RDF data by dragging and dropping files

Finally the platform is configurable on many different levels, based on a specialized dashboard,
in order to enhance flexibility, robustness and simplicity. Configuration options are accessed
directly through the GUI (an administrator user role is required) and can significantly affect
functionality, system performance and the level of complexity. These parameters are mainly
limitations, regulations and option exceptions to be set on queries, the logical expressions
used, or the available entities.

VRE4EIC Page 40 of 59

D3.4 Enhanced VREs PU

Figure 21 Configuration options that can enhance performance and set the desired usage complexity

Overall, a more detailed listing of functionalities supported by the platform is provided in
Annex section of this deliverable. The functionality covers aspects related to security, data
presentation and discovery, data import and export, system configuration and administration
and system’s robustness and fault tolerance.

4.4 Architecture of the VRE4EIC GUI

The GUI is implemented by several sub-components which interact with external components
(mainly using restful web services). A high-level diagram of the platform is presented in Figure

22.

Figure 22 VRE4EIC Architectural Design w.r.t. sub-components

In the next sections, each of the components, constituting the portal, are described in more
details along with their responsibilities and main functionality.

VRE4EIC Page 41 of 59

D3.4 Enhanced VREs PU

4.4.1 Front End

The front end is mainly responsible for facilitating human-computer interaction and provides
the required features that constitute the GUI intuitive and usable. However, its functionality
is further expanded, since it is also responsible for implementing the required logic for
executing users’ actions and deciding the proper services to be called. Moreover, this
component is responsible for properly handling errors and informing end-users about them
when they occur. Finally, tasks related with users’ login or registration are directly handled by
this component. The front end is based on the Model View Controller (MVC)10 design (Figure
23), where the user interface layer is isolated from the application’s logic. The available
controllers receive http requests and dynamically build the required models for the data view.
This view then uses the data prepared by the controller to generate a final presentable
response.

Figure 23 Diagram of interactions within the MVC pattern

The logic of the front-end regarding the dynamic construction of queries, relies on the general
assumption that the user is looking for a “target entity” which is “related” to one or more

“entities”. That assumption is further expanded so that each of the “entities” can be “related”
to other “entities”, forming in this way a tree model on the fly, describing the constructed

query. The picture below shows the tree model in a generic way.

10 https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

VRE4EIC Page 42 of 59

D3.4 Enhanced VREs PU

Figure 24 Tree model describing the general concept under which relies the logic of dynamically constructing queries

All nodes under the root node are actual filters applied on target entity. The same applies all

node under any node parent. Any nodes in the same level that have the same parent and are
more than one are accompanied by a regular expression (OR/AND) that defines the way filters
are applied together.

4.4.2 Back End

The back end is responsible for serving all front end needs by executing the required functions
and calling the appropriate web services. The back end mainly consists of controllers, internal
back-end services (not to be confused with web services) and an Intermediate database.

Each controller is responsible for calling the appropriate services or external web-services,

which combined together can fulfill a task. Moreover, the responsibility of the controllers is
to deliver the required output at the front end, or the appropriate error message, if some

failure occurs. This sub-component is responsible for checking the token’s validity in any
interaction with the front-end and acts respectively. On the other hand, services are

responsible for accomplishing more specific tasks that usually aim on single targets. These
services interact with web services to achieve their goal. The involved web services are the
node services, related with user’s profile and security, and the metadata services, related to
query execution and metadata import / export, which are explained next. Since the platform
interacts with users and is flexible enough to operate in a generic form, configuration options
and users’ structured queries, have to be stored to some place different than the Triple Store
Repository itself, since this is only used for storing metadata. As such, an intermediate
database is used for serving this purpose.

VRE4EIC Page 43 of 59

D3.4 Enhanced VREs PU

4.5 Interactions of the VRE4EIC GUI with the e-VRE building

blocks

4.5.1 Node Service

The VRE4EIC Metadata Portal interacts with the Node Service for:

 User authentication at login;

 User registration;

 Retrieving user’s profile information;

 Retrieving User roles for applying RBAC;

It is important to mention that the portal itself does not hold any personal information related
to end-users, since this is the responsibility of the Node Services to fulfill in some remote and
secure repository.

4.5.2 Metadata Service

The Metadata Service is the building block, responsible for providing services related to
metadata management. These services can be further classified into Query Services and

Import/Export Services. Query services execute queries on the data stored into the Triple
Store Repository and deliver the output back to the requester. Import services can insert data
formed in a variety of formats into the Triple Store Repository. Finally, Export Services can
extract data specified from the Triple Store repository and deliver it back to the requester in
a variety of formats. The Metadata Restful API are documented using Swagger, documents

can be accessed using this link:

 https://app.swaggerhub.com/apis/rousakis/ld-services/1.0.0.

The set of specific Web Service entry points used in the VRE4EIC Portal appear in Figure 25.

Figure 25 The list of entry points and descriptions of Metadata Service e-VRE WS used by VRE4EIC Portal

4.6 Technologies used in implementing the VRE4EIC GUI

A powerful combination of technologies has been used to implement the VRE4EIC Graphical
User Interface

 Spring Boot (a Web Application Using Spring MVC)

 AngularJS (a structural framework for dynamic web apps based on HTML and
JavaScript)

https://app.swaggerhub.com/apis/rousakis/ld-services/1.0.0

VRE4EIC Page 44 of 59

D3.4 Enhanced VREs PU

 Bootstrap-UI & Material Design (UI component frameworks)

All the components can be executed from the command line as standalone Maven
applications, since they include an embedded server container (Jetty by default, however
Tomcat can also be embedded)

 No prior installed software is required (except of the JVM);

 No prior configuration is needed;

 Independent, portable and easy to be deployed

5 The Enhanced EPOS VRE

EPOS, the European Plate Observing System, is a long-term plan to facilitate integrated use of

data, data products, and facilities from distributed research infrastructures for solid Earth
science in Europe. EPOS will bring together Earth scientists, national research infrastructures,

ICT (Information & Communication Technology) experts, decision makers, and public to
develop new concepts and tools for accurate, durable, and sustainable answers to societal

questions concerning geo-hazards and those geodynamic phenomena (including geo-
resources) relevant to the environment and human welfare.

EPOS vision is that the integration of the existing national and trans -national research
infrastructures will increase access and use of the multidisciplinary data recorded by the solid

Earth monitoring networks, acquired in laboratory experiments and/or produced by
computational simulations. The establishment of EPOS will foster worldwide interoperability

in the Earth sciences and services to a broad community of users.

Many institutional data providers in the field of solid Earth science exist in Europe, and they
provide access to datasets and other resources at National level. However only some of them
are federated and integrated, and as a result a user willing to make use of resources, (that is
to say datasets, data products, software or services), has to access institutional portals,

department databases and other scattered sources of information. That’s where EPOS comes
into action. Its main goal is to integrate scattered resources across Europe in the field of Sol id

Earth Sciences. That’s why EPOS is also referred to as a “long-term plan for the integration of
research infrastructures for solid Earth Science in Europe», with the goal of investigating

tectonic processes, earthquakes related phenomena, volcanic eruptions, surface dynamics
and geo resources.

Research Infrastructures and Facilities encompassed by EPOS are located in 25 countries,

mostly European countries. They also include International organizations like ORFEUS and
EMSC in seismology, INTERMAGNET in magnetic observation discipline, EuroGeoSurveys in
geology and others. The amount of resources to be integrated is huge, thus making the
challenge of building EPOS exciting: We want indeed to: Integrate more than 250 National and

Regional Research Infrastructures; Provide access to data produced by around 10.000 sensors
in Europe; Manage and give access to several petabytes of data. Thousands of users are
expected, so EPOS also need a robust user management system.

VRE4EIC Page 45 of 59

D3.4 Enhanced VREs PU

In the framework of VRE4EIC, EPOS had a twofold synergy with the e-VRE developed in the
project, at integration level and at enhancement level

5.1 EPOS Integration within VRE4EIC

In the framework of VRE4EIC EPOS contributed by providing resources, dataset, webservices

and knowledge in order to make its assets available in an integrated way through VRE4EIC e-
VRE prototype.

5.1.1 Provision of metadata describing EPOS assets

First step was to provide the “assets” of EPOS described by means of metadata that was

ingested into the main VRE4EIC catalogue.

Currently EPOS provided more than 200 metadata elements, of which:

70 persons, 35 organisations, 96 webservices, 6 datasets.

5.1.2 Provision of Scientific Background, use case and tools

VRE4EIC prototype focuses on the provision of integrated resources by research infras tructure
and VREs. However in order to demonstrate the real contribution of VRE4EIC e-VRE, such

resources needs to be provided, consumed and organised in a meaningful way, so that
researches can eventually obtain information and data of interest.

With respect to the quality and type of and information provided to VRE4EIC, also with the
goal of building a scientifically meaningful demonstrator, EPOS provided the scientific
background, based on literature (L. Chiaraluce, Unravelling the complexity of Apenninic

extensional fault systems: A review of the 2009 L'Aquila earthquake (Central Apennines, Italy),
Journal of Structural Geology, Volume 42, 2012, Pages 2-18, ISSN 0191-8141,

https://doi.org/10.1016/j.jsg.2012.06.007 and other studies).

The natural consequence was also the provision of user story, based on the scientific
background, and of meaningful datasets and software tools.

User story

Here is the user story provided by EPOS:

“One of the added values of Virtual Research Environments, and in particular of VRE4EIC, is
the capability of aggregating resources by several data providers. It is clearly a requirement in
many domains. For instance in the Solid Earth Sciences domain, tectonic studies take
advantage of all information provided by different disciplines and by different sensors type:

seismometers, GPS systems, Satellites.

This is the case of the paper [1] L. Chiaraluce, “Unravelling the complexity of Apenninic
extensional fault systems : A review of the 2009 L’Aquila earthquake (Central Apennines , Italy

),” J. Struct. Geol., vol. 42, pp. 2–18, 2012.

That’s a study of the Apenninic fault systems which includes elastic properties of the fault, and
modeling of the processes that took place during the event, in this case dilatancy and diffusion
processes.

https://doi.org/10.1016/j.jsg.2012.06.007

VRE4EIC Page 46 of 59

D3.4 Enhanced VREs PU

This study made use of:

1. Historical seismic sequences

2. Seismic datasets, in particular seismic waveforms from seismic stations, and
earthquake localisation

3. Geological maps (Carbonates platform)

4. Earthquake focal mechanisms

5. InSAR imagery

6. other datasets

Some of the above resources are available by means of services set up by institutions or
Research Infrastructure. This is the case, for instance, of historical earthquakes, seismic

waveforms and localisation, some geological maps, InSAR images.

However those sources of data are available from different sources, which sometime require

different user/passwords pairs, access to several portals, with different methods. Sometimes
they are even difficult to search or access due to the lack of appropriate user interfaces.

In this context a VRE that can integrate different sources and provide access to resources by
means of a simple search and discovery tool, would enable scientists to have a full overview

and full access, from one single portal, to all (or almost all) needed resources.

On the basis of the described example, we will now use the VRE4EIC GUI to get access to some
of the resources used in the paper we just mentioned.”

5.1.2.1 Datasets and Software

In order to demonstrate the real added value of a eVRE, on the basis of the above user story,
EPOS provided datasets related to earthquakes and volcanos (seismological events, seismic
waveforms, and volcano related measurements like data flows), webservices description to
obtain seismic waveforms and earthquakes events details, and software to process and
visualise seismic waveforms (SeisGram2K Seismogram Viewer).

5.1.3 EPOS integration within VRE4EIC - Workflows

In the framework of integrating EPOS resources in VRE4EIC, EPOS also provided access to so
called “scientific workflows”. The following diagram (Figure 26) shows how the integration
was done:

VRE4EIC Page 47 of 59

D3.4 Enhanced VREs PU

Figure 26 Epos e-VRE workflow integration

The three boxes represent respectively EPOS system, VRE4EIC system and the “user system”
(e.g. laptop).

Initially an EPOS user, but might be any user, launch on his/her own laptop the TAVERNA
workbench application in order to execute some scientific workflow (step 1 in the picture). In
order to access to workflows provided by the VRE4EIC system, the user install a plugin that

automatically connects to the WF configurator component (in the VRE4EIC domain) and
fetches web services descriptions stored into VRE4EIC metadata manager (step 2 and step 3

in the picture). The metadata manager, in turn, access to webservices description from EPOS
workflows catalogue (whether runtime or by ingesting information in advance).

This ensures that any non-skilled user can take advantage of workflows and webservices from
EPOS domain (but potentially from any domain) just by installing a plugin on its workflow

application (in this case Taverna workbench).

5.2 EPOS enhancement by means of VRE4EIC building blocks

In addition to the integration, EPOS took advantage of: (a) VRE4EIC know-how in terms of

architecture paradigms and techniques, and (b) of VRE4EIC services, in particular the AAAI
service.

5.2.1 EPOS architecture enhancement

First enhancement in EPOS was in terms of system architectural paradigms and functionalities.

Leveraging on the studies, tests and experience from WP3, EPOS technical team started a
fruitful collaboration. Both system start from a common baseline, which can be summarized

with the a) adoption of the same architectural paradigm (Microservices), b) adoption of the
same metadata oriented approach, through the use of a CERIF based metadata catalogue.

EPOS technical staff and VRE4EIC WP3 had regular meetings and discussion, both remotely
and face to face (at the Project’s meetings) where the two architectures were compared.

As a result, EPOS architecture was enhanced by moving from a microservice centralized
management, to a microservice choreography approach, both described in Section 3 of this

Deliverable.

VRE4EIC Page 48 of 59

D3.4 Enhanced VREs PU

A snapshot of the EPOS Architecture follows.

Figure 27 The EPOS architecture

5.2.2 EPOS functionality enhancement

A second enhancement of EPOS was in terms of additional functionalities provided by
VRE4EIC.

As mentioned, the main EPOS system, called Integrated Core Services Central hub, uses a

microservice approach. It includes a central queuing system and several components that
performs atomic tasks and are connected to the queuing system. Examples of microservices

are reported in the above in the diagram: the queueing system, the connector to Thematic
Core Services and the metadata catalogue and others.

As evident from the diagram, some components implementing functionalities as authorisation
are missing. They are however implemented by components or “building blocks” developed

in the context of VRE4EIC. Building blocks are basically the components of the VRE4EIC
reference architecture. Technically each building block is a microservice implementing a major
component of the Reference Architecture, so it can be easily “plugged” into other
architectures.

In this case, the building block to consider is the «AAAI service». AAAI stands for
Authentication, Authorization, Accounting Infrastructure, that is to say a system to manage

user secure access to a system with authorization. The main characteristic of this service is
that it integrates different authentication mechanisms in one single system, thus providing a

user a single point of access to resources. In practice, it means that independently from his or
her account credentials, user will type them in one single form. Integrating it into an existing

Research Infrastructure like EPOS, means avoiding the effort of integrating many different
authentication services into one Research Infrastructure, with all related technical and
security issues.

EPOS tested the module, and the results were encouraging, as it enabled EPOS users with
existing credentials to log in to EPOS in an easy way, without jumping from a website to

another. It indeed integrated several heterogeneous Identity Providers, like eduGAIN, Google,
but potentially – what we aim at doing in the future – also other providers, both academic and
generic, for instance ORCID, GitHub, Facebook.

VRE4EIC Page 49 of 59

D3.4 Enhanced VREs PU

The following diagram shows in terms of functional blocks how the enhancement was
achieved.

Figure 28 EPOS enhancement

Green box represent the EPOS system, while the red box represents the VRE4EIC system
prototype.

Users access to the EPOS GUI, and when they want to perform login they are redirected (step
1) to the VRE4EIC node services. This service in turn register/login the user by means of the
VRE4EIC AAAI service (step 2). Response is enclosed into a token that can be used from the
GUI (step 3). Such token will then be used by the GUI for communicating with the EPOS WEB

APIs. Anytime the GUI makes a call the EPOS WEB APIs, indeed, the token goes through a proxy
that checks its validity by connecting to the VRE4EIC service (steps 4-5). If the token is
recognised as valid, then the request proceeds (step 6) and WEB APIs respond with a data

pyload that is then rendered or presented by the GUI to the user (steps 7-8).

These components interoperate in real time, thus providing the functionality of logging in to
the EPOS Web Interface by using the services provided externally by VRE4EIC. All this
complexity is hidden to the user, who just insert login and password in one simple login form.

A working demo of this integration can be found here:

http://nodedev.bgs.ac.uk/epos/epos-gui/otherAAIversion/search

Clicking on the “login” top right button, user can log in and is automatically recognised by the

system.

http://nodedev.bgs.ac.uk/epos/epos-gui/otherAAIversion/search

VRE4EIC Page 50 of 59

D3.4 Enhanced VREs PU

5.3 Conclusion of this section

The collaboration and interaction between EPOS and VRE4EIC was carried along two main
dimension: EPOS integration and EPOS enhancements.

In the first one, EPOS contributed to make its assets (metadata, datasets etc.) available in an

integrated way through VRE4EIC system prototype. In the second one, EPOS took advantage
of existing building blocks from VRE4EIC that implemented missing functionalities in EPOS.

This interaction hence demonstrated both the feasibility of the VRE4EIC concept that aims at
integrating heterogeneous resources in a homogenous way and the added value of the

architecture and developments carried on in VRE4EIC that can contribute to the
enhancements (i.e. expanding functionalities) of existing VREs and Research Infrastructures.

6 The Enhanced ENVRIplus VRE
The ENVRI community represents a cluster of environmental and earth science research
infrastructures, and thus represents a vital forum in which to promote the e-VRE solutions

developed in the project. The Data for Science theme within the ENVRIplus project is
concerned with providing common technical solutions and recommendations to many of the

problems shared by the ENVRI community, for example with regard to metadata cataloguing,
provenance, identification and citation of persistent resources and data processing. Thus the

e-VRE architecture and building blocks solutions have both been exploited to the ENVRIplus
community as part of the ENVRI service portfolio of technologies, standards and
recommendations. More specifically, e-VRE developments have been applied to the problems
of enhancing i) cross-RI data and service discovery, ii) cross-RI workflow composition, and iii)
cross infrastructure workflow execution and provenance.

6.1 Community catalogue for cross-RI data and services

In the ENVRIplus community, data and other digital assets are catalogued using different
metadata standards (e.g., CKAN, ISO 19139 and Dublin Core) and using different technical

solutions to serve metadata (e.g., B2FIND, GeoNetwork and Get-IT). Such diversity makes
cross-RI data and service discovery very difficult.

To address this, the e-VRE solution has been used in ENVRIplus to build a contextual rich
community catalogue for multiple research infrastructures in ENVRIplus. The CERIF standard

was included in the ENVRIplus catalogue recommendation together with CKAN (used by
EUDAT’s B2FIND service). More specifically, the following two actions were taken to address

the short term and long term challenges respectively:

6.1.1 Short term: manually setting up a CERIF-based data catalogue

In the short term, the CERIF database and catalogue software stack already implemented by
EPOS (which is also a member of the ENVRI community) have been directly deployed in

ENVRIplus by ENVRIplus project partner IFREMER. By setting the ENVRIplus instance, a small
set of records from SeaDataNet (concerned with the marine domain), ICOS (concerned with

the atmospheric domain) and ANAEE (concerned with ecosystems and biodiversity) are being
manually ingested. Figure 29 shows the basic scenario:

VRE4EIC Page 51 of 59

D3.4 Enhanced VREs PU

Figure 29 The CERIF catalogue solution provided by EPOS will be deployed more broadly in ENVRIplus.

6.1.2 Long term: automatically harvesting CERIF records from diverse ENVRI RI catalogues

In parallel to (a), an automated approach is also being prototyped by the University of
Amsterdam within ENVRIplus. The basic idea is to take advantage of the metadata manager

and metadata mappings developed in WP4 using the 3M environment, and to build upon that
development by automating the manual pipeline currently used by FORTH to dynamically

transform metadata records from ENVRI RI catalogues into a single CERIF database. Figure 30
shows the basic scenario:

Figure 30 An automated pipeline for harvesting ENVRI RI catalogues into a single CERIF catalogue

VRE4EIC Page 52 of 59

D3.4 Enhanced VREs PU

Based on the automated pipeline shown in Figure 30, we have developed a a service --named
Metadata Catalogue Mapper (MetaCatMap)-- that implements a flexible metadata mapping

pipeline using different metadata schemes to provide cross-RI metadata search and discovery.

Metadata Catalogue Mapper (MetaCatMap) consists of the following components:

 RESTCat: This is the REST frontend API that takes requests from users to perform the
conversion from one standard to another. The parameters or the request are the
source metadata catalogue url and the target mapping standard

 CatTask: This component extracts individual entries from the source metadata

catalogue and creates a mapping task and adds it in a task queue

 CatMap: This component pulls a mapping task from the task queue, and queries

the X3ML mapping framework for the appropriate mapping that matches the source
and target standard

 X3ML Engine: This component performs the actual transformation of an entry from
the source standard to the target standard

Figure 31 shows the overall architecture.

Figure 31 Architecture of the Metadata Catalogue Mapper (MetaCatMap)

6.2 Cross-RI data and service discovery

Following the construction of the joint catalogue based on CERIF, the semantic search

capabilities being developed as part of the metadata service building block of the e-VRE will
be in turn applied in ENVRIplus to enhance data and service discovery based on vocabulary

linking activities now being conducted in ENVRIplus between RIs with similar but currently
distinct vocabularies for describing environmental phenomena and observations. Since the

metadata from ENVRIplus catalogues will be ingested and mapped onto CERIF, it is possible

VRE4EIC Page 53 of 59

D3.4 Enhanced VREs PU

to exploit the semantic classification layer of CERIF to take advantage of the linked
vocabularies produced by ENVRIplus and so provide enhanced semantic search based on the

metadata service developed by FORTH, as shown in Figure 32.

Figure 32 Using the semantic search support provided by the e-VRE to enhance cross-RI data and service discovery.

6.3 Cross-RI workflow composition

Using the semantic search capabilities of the metadata service and the workflow manager

building block provided by the e-VRE, the ENVRIplus community is also able to enhance their
cross-RI workflow composition capabilities. Figure 33 shows the basic scenario:

Figure 33 The workflow composition using eVRE building blocks.

The process can be broken down into six distinct steps:

a. Ingesting metadata from data and service catalogues (in ENVRIplus) into a CERIF
catalogue, as described earlier.

b. Semantically searching data and services using the e-VRE metadata service with semantic
search capabilities, likewise as described earlier.

c. The workflow environment (in this case we use Taverna), will load the pre-selected
services (identified in step b) into its own local service catalogue.

d. Composing an executable workflow using Taverna.

e. Executing the workflow using the Taverna engine.

VRE4EIC Page 54 of 59

D3.4 Enhanced VREs PU

f. Storing the metadata of successful workflow compositions or executions back into the
joint CERIF catalogue.

During the integration, the ENVRIplus team specifically compared two scenarios to show the
added value of using semantic search, as shown in the figure below:

Figure 34 . Loading the RI service catalogue into Taverna directly (scenario a, indicated by the pink line via a UvA-developed

plugin) or via CERIF and semantic search (scenario b, provided by the CERIF pipeline).

In the context of a single RI, scenario (a) can provide an effective, quick solution. In the case
of workflows composed using services provided by multiple RIs however, it is judged that

scenario (b) will provide better selection on data and services.

6.4 Cross-infrastructure workflow execution and provenance

Finally, the e-VRE building blocks have also been used to enhance workflow execution and
provenance collection across multiple e-infrastructures. Figure 35 shows the basic scenario:

Figure 35 Cross-Infrastructure workflow execution and provenance

During the integration phase, the workflow manager (the e-VRE building block) will be used
to perform execution, with services produced by the UvA team together with the ENVRIplus

VRE4EIC Page 55 of 59

D3.4 Enhanced VREs PU

provenance working group used to harmonize the distributed provenance information
generated by the different distributed e-infrastructures at different levels on the technology

stack, including workflow level, service level and infrastructure logs. A CERIF record will be
created to link the different contexts of provenance data from different sources.

7 Conclusions
This deliverable has presented the four main software prototypical implementations of the VRE4EIC
project:

1. the Canonical Reference Prototype (CRP), to be used as a model for future VREs, offering an
implementation of the Reference Architecture of VRE based on the integration of state-of-the-
art, open source technologies, such as the Unity system for AAAI and the Taverna Workflow
system.

2. the eVRE Graphical User Interface, supporting the researcher in interacting with the CRP, and
in browsing, querying and accessing the Metadata Catalogue.

3. the enhanced EPOS VRE, using the VRE4EIC technologies to realize two enhancements: (1) the
move from a microservice centralized management, to a microservice choreography
approach; and (2) the integration of the eVRE AAAI service into the EPOS architecture via the
eVRE Node service.

4. the enhanced ENVRIplus VRE, using the VRE4EIC technologies to realize two enhancements:
(1) cross-RI data and service discovery, relying on the eVRE Metadata service; and (2) cross-RI
workflow composition, relying on the semantic search capabilities of the metadata service and
the workflow manager building block provided by the e-VRE.

The activity of the project continues on two main streams of work:

 the production of D3.5 “Final Architecture Design”, which will refine D3.1 with the findings on
the Reference Architecture gained during the implementation of the building blocks and the
CRP

 the development of demonstrators of the above four prototypes, showing the effective
functionalities of the prototypes in realistic application scenarios.

8 References
[HOLL] Holl S. Automated Optimization Methods for Scientific Workflows in e-Science
Infrastructures. Forschungszentrum Jülich; 2014.

[Newman] S. Newman, Building Microservices, O'Reilly Media. February 2015

[D33] https://www.vre4eic.eu/images/Public_deliverables/D3.3_Building_Blocks.pdf

https://www.vre4eic.eu/images/Public_deliverables/D3.3_Building_Blocks.pdf

VRE4EIC Page 56 of 59

D3.4 Enhanced VREs PU

[RUSS] M. Russ, Going "Events-First" for Microservices with Event Storming and DDD,
http://www.russmiles.com/essais/going-events-first-for-microservices-with-event-storming-

and-ddd#

[D31] https://www.vre4eic.eu/images/Public_deliverables/D3.1_Architecture_Design.pdf

9 Annexes

9.1 Using 2FA in e-VRE prototype

In order to implement the two factors authentication method (described in the AAAI section)

we have developed a software module implementing a Telegram Bot: a software that enables
the e-VRE to interact with the media platform Telegram.

Telegram Bots are special Telegram accounts that do not require a phone number to set up,
the VRE4EIC bot has been registered with the id:

evre-tg_authenticator

A user that wishes to interact with e-VRE using Telegram, can add this account to his/her
contact list and can start sending message.

The list of commands accepted by evre-tg_authenticator is:

● /help: Get all the commands the e-VRE bot provides
● /hello: Welcome to e-VRE bot

● /register: This command registers this Telegram Id as an authenticator for a user in e-
VRE, usage: /register username password

● /remove: This command deletes this Telegram Id as authenticator for username in e-

VRE, usage: /remove username password

http://www.russmiles.com/essais/going-events-first-for-microservices-with-event-storming-and-ddd
http://www.russmiles.com/essais/going-events-first-for-microservices-with-event-storming-and-ddd
https://www.vre4eic.eu/images/Public_deliverables/D3.1_Architecture_Design.pdf

VRE4EIC Page 57 of 59

D3.4 Enhanced VREs PU

These commands are forwarded by telegram to the e-VRE software module TgAuthenticator,
developed from scratch using Java technology, that executes them.

When an e-VRE user sends the /register username password command to evre-
tg_authenticator bot, the TgAuthenticator sets up Telegram has the channel that will be used
in two factors authentication for that user, this means that the second factor code will be sent
to him/her via Telegram (note that Telegram channels are encrypted). The command /remove
username password instead disables the two factor authentication. In the future new
commands will be added to this bot.

From the architectural point of view he TgAuthenticator is an independent software module,
distributed as jar, that enables the e-VRE to be integrated with an external application
(Telegram); in order to manage its life-cycle a basic version of the App manager has been
implemented, it is able to start/stop TgAuthenticator and sends messages to other services
when the status change.

9.2 VRE4EIC GUI implemented functionalities

Security

F1 Login with two factors authentication;

F2 Role Based Access Control (RBAC) to regulate users’ actions;

F3 User profile management;

F4 User Registration;

Data Presentation & Query Construction

F5 Data classification with respect to VREs and RIs;

F6 The system is capable of assisting users to build and execute advanced queries;

F7 Provides a simple and user-friendly Graphical User Interface (GUI);

F8 Presents results in both tabular and geospatial form through suitable GUIs

respectfully;

F9 Provides an interactive map to better assist end users into perceiving geographical
data and construct geospatial data queries (allows setting geographical region or

selecting instances);

F10 Provides SPARQL view of the constructed queries;

VRE4EIC Page 58 of 59

D3.4 Enhanced VREs PU

F11 Allows end users to store and load constructed queries, in such a way that all actions

made through the GUI are preserved (and shown when loading one);

F12 Stored queries are associated to the user’s profile and the potential of sharing them
with other users or making them public (through the portal) will be possible (future
work);

F13 Suitable statistics and numbers are provided when available.

F14 All input forms are validated before the submission of any entries, preventing end
users from entering inappropriate input;

F15 Appropriate recommendations are available to the end users when necessary;

F16 The system prevents end users from constructing queries leading at no results, by
showing only options and choices that make sense (options are dynamically adjusted);

F17 Appropriate tooltips or guidelines are available through the system for better usage
assistance;

Data Import / Export

F18 The platform allows data import from different file formats on existing named graphs

or constructs a new one if necessary;

F19 Supports a variety of RDF based import file formats;

F20 Allows data export capabilities from final search results;

F21 Automatically acquires and uses any provenance information that is available from

user’s profile while importing.

Administration & Configuration

F22 A variety of configuration options for customizing the default behavior of the system
is available through the UI; These are:

i. Setting limit on level and degree;

ii. Allowing usage of both regular expressions (OR / AND) or just the one chosen
first;

iii. Selecting entities to be excluded from the list of available;

iv. Setting limit in the max number of instances selected per related entity;

VRE4EIC Page 59 of 59

D3.4 Enhanced VREs PU

v. Setting the maximum number of results for which pins will instantly be

displayed on the map when opening it;

vi. Setting the maximum number of results in a specified region for which pins will
instantly be displayed on the map when opening it;

vii. Setting the maximum number of pins for which instances will be selected
instead of the respective region drawn;

viii. Showing pins or not when drawing some region on the map;

ix. Always showing pins for selected instances or not

Robustness and Fault Tolerance

F23 All possible errors are properly handled;

F23 System’s functionality is preserved after recovering from any error potential error;

F24 Appropriate message reporting is provided to end users when necessary;

Table 1. Functionalities of the VRE4EIC Metadata Portal

