

VRE4EIC

A Europe-wide Interoperable Virtual Research Environment

to Empower Multidisciplinary Research Communities

and Accelerate Innovation and Collaboration

Deliverable D3.1

Architecture Design

Document version: 1.0

Ref. Ares(2016)5706825 - 01/10/2016

D3.1 Architecture Design

Page 2 of 89

D3.1 Architecture Design

Page 3 of 89

VRE4EIC DELIVERABLE

Name, title and organisation of the scientific representative of the project's coordinator:

 Mr Philippe Rohou t: +33 4 97 15 53 06 f: +33 4 92 38 78 22 e: philippe.rohou@ercim.eu

GEIE ERCIM, 2004, route des Lucioles, Sophia Antipolis, F-06410 Biot, France

Project website address: http://www.vre4eic.eu/

Project

Grant Agreement number 676247

Project acronym: VRE4EIC

Project title: A Europe-wide Interoperable Virtual Research

Environment to Empower Multidisciplinary Research

Communities and Accelerate Innovation and

Collaboration

Funding Scheme: Research & Innovation Action (RIA)

Date of latest version of DoW against

which the assessment will be made:

14.01.2015

Document

Period covered: M1-M12

Deliverable number: D3.1

Deliverable title Architecture Design

Contractual Date of Delivery: September 30, 2016

Actual Date of Delivery: October 1, 2016

Editor (s): Carlo Meghini (CNR ISTI)

Author (s): Keith Jeffery (ERCIM)

Cesare Concordia, Eda Marchetti (CNR ISTI)

Theodore Patkos, Nikos Minadakis, Yannis Marketakis,

Ioannis Chrysakis (FORTH ICS)

Jacco van Ossenbruggen, Jan Wielemaker (CWI)

Reviewer (s): Daniele Bailo (INGV), Laura Hollink (CWI)

Participant(s):

Work package no.: 3

Work package title: Architecture, VRE development, integration and

scalability

Work package leader: Carlo Meghini (CNR ISTI)

Distribution: Confidential, VRE4EIC and EC only

Version/Revision: 1.0

Draft/Final: Final

Total number of pages (including cover): 89

D3.1 Architecture Design

Page 4 of 89

What is VRE4EIC?

VRE4EIC develops a reference architecture and software components for VREs (Virtual Research

Environments). This e-VRE bridges across existing e-RIs (e-Research Infrastructures) such as EPOS and

ENVRIPLUS, both represented in the project, themselves supported by e-Is (e-Infrastructures) such as

GEANT, EUDAT, PRACE, EGI, OpenAIRE. The e-VRE provides a comfortable homogeneous interface for

users by virtualising access to the heterogeneous datasets, software services, resources of the eRIs

and also provides collaboration/communication facilities for users to improve research

communication. Finally it provides access to research management /administrative facilities so that

the end-user has a complete research environment.

Disclaimer

This document contains a description of the VRE4EIC project work and findings.

The authors of this document have taken any available measure in order for its content to be

accurate, consistent and lawful. However, neither the project consortium as a whole nor the

individual partners that implicitly or explicitly participated in the creation and publication of this

document hold any responsibility for actions that might occur as a result of using its content.

This publication has been produced with the assistance of the European Union. The content of this

publication is the sole responsibility of the VRE4EIC consortium and can in no way be taken to reflect

the views of the European Union.

The European Union is established in accordance with the Treaty on European Union (Maastricht).

There are currently 28 Member States of the Union. It is based on the European Communities and

the Member States cooperation in the fields of Common Foreign and Security Policy and Justice and

Home Affairs. The five main institutions of the European Union are the European Parliament, the

Council of Ministers, the European Commission, the Court of Justice and the Court of Auditors

(http://europa.eu/).

VRE4EIC has received funding from the European Union’s Horizon 2020 research and innovation

programme under grant agreement No 676247.

D3.1 Architecture Design

Page 5 of 89

Table of Contents

1 Introduction ... 9

2 Methodology and approach .. 11

2.1 Elicitation and collection of requirements .. 11

2.2 Functional architecture design .. 12

2.3 Architecture design ... 12

2.4 REFERENCES... 13

3 Analysis of requirements ... 14

4 The VRE4EIC Reference Architecture .. 15

4.1 Rationale .. 15

4.1.1 Virtual Research Environment ... 15

4.1.2 A Vision for the e-VRE Architecture .. 16

4.2 Component Overview .. 20

4.3 Components in detail .. 22

4.3.1 User Manager component... 22

4.3.2 AuthenticatorApp: Authentication interface description.. 25

4.3.3 Resource Manager component ... 26

4.3.4 Workflow Manager Component .. 28

4.3.5 Message Oriented Manager (MOM) component .. 30

4.3.6 Resource Adapter .. 31

4.3.7 APP Manager Component ... 31

4.3.8 Metadata Manager (MM) Component.. 32

4.3.9 The Query Manager (QM) Component ... 36

4.3.10 The Model Mapper Component .. 39

4.3.11 The LD Manager Component... 41

4.3.12 eVRE WS component ... 43

4.3.13 AAAI Component ... 44

4.4 References ... 45

5 Joining an eVRE instance ... 46

6 Assessment of the architecture ... 48

6.1 Introduction ... 48

6.1.1 VREs ... 48

6.1.2 e-RIs ... 49

6.1.3 e-Is ... 49

6.2 Use Case Sequence Diagrams .. 49

6.2.1 Search (simple/advanced) ... 50

6.2.2 Cross search ... 52

6.2.3 Results browsing .. 54

6.2.4 Data publishing .. 56

7 Outlook .. 58

D3.1 Architecture Design

Page 6 of 89

8 Conclusions .. 59

9 Annexes ... 60

9.1 Architectural components ... 60

9.2 Generalised functions .. 62

9.3 Requirements and components .. 76

D3.1 Architecture Design

Page 7 of 89

Table of Figures

Figure 1 Entities and relationships involved in the analysis of requirements 14

Figure 2 Resources, e-RIs Services and VRE Services .. 16

Figure 3 Alternative approaches to the cooperation on e-RIs and a VRE ... 17

Figure 4 Architectural tiers in a VRE .. 18

Figure 5 Conceptual components and logical tiers ... 19

D3.1 Architecture Design

Page 8 of 89

Executive Summary

This deliverable presents the initial Reference Architecture of the VRE4EIC Project.

The Reference Architecture is one of the results of the first year of work of the project. In order to

derive it, the project conducted more than sixty interviews, and carefully characterized five existing

e-Research Infrastructures. This way, it obtained a significant picture of the needs of the scientists,

and of how these needs are met by the existing e-Research Infrastructures.

This picture was an input to the architects of the Project, who analysed it in detail, and distilled an

exhaustive list of functions whose implementation is needed to satisfy the requirements in ways that

advance the current e-Research Infrastructures.

Competence in software system design and development, as well as consideration of existing

standards and best practices, allowed the VRE4EIC architects to group functions into components,

and to further structure components in sub-components, thereby laying the basic building blocks of

the Reference Architecture. Each component or sub-component was assigned a set of interfaces,

each consisting of methods performing the tasks that provide the lowest level of granularity of the

Reference Architecture.

An intense activity of verification then ensued, aiming at verifying that the methods on the

component interfaces could be appropriately composed into complex workflows able to realize the

required functionality.

The deliverable presents the result of this work, and documents the activities and the decisions that

led to it.

Based on this solid piece of work, the project is entering its second year of activity. While keeping the

Reference Architecture aligned with additionally collected requirements and e-RI characterizations, a

gap analysis will be conducted to assess two existing Virtual Research Environments with respect to

the Reference Architecture. The gap analysis will allow the project to select the components of the

Reference Architecture that will be implemented in order to enhance the selected Virtual Research

Environments.

As a result of these activities, at the end of the project the final Reference Architecture will be

released.

D3.1 Architecture Design

Page 9 of 89

1 Introduction
This deliverable provides the initial architectural design of e-VRE; the virtual research environment

reference architecture (later to be deployed as a prototype). The architectural design has been

produced utilising:

1. Requirements elicited by interviews of representatives of various RIs (Research

Infrastructures) – in particular of their e-RIs electronic representation as systems for access

and utilisation (D2.1);

2. Characteristics of the e-RIs in terms of assets available (users, data, software components,

services (including workflows), resources (computers, detectors, instruments) (D2.1 live

document);

3. Analysis of existing VREs, SGs (Science Gateways) and VLs (Virtual Laboratories)

internationally to cross-verify the requirements and characteristics.

The design method refines from business architecture (based on business requirements) through

functional architecture, applicative architecture and technical architecture. The refinement has

included input from:

1. WP4: on the metadata mappings to allow information from the catalogs of e-RIs to be

included in that of e-VRE to allow optimal interfacing between e-VRE and each e-RI in the

dimensions of users, data, software components, services (including workflows) and

resources (including computers, detectors, equipment);

2. WP5: on the integration of policy aspects or NFRs (non-functional requirements) covering

trust, security, privacy, rights (including licensing), SLA (service level agreements) and QoS

(quality of service) implying performance, scalability and reliability to ensure the NFRs are

pervasive through the software stack not only in the e-VRE but also the accessed and utilised

e-RIs (including their e-I (e-infrastructure) platforms);

The result is the specification of a set of components of the e-VRE with their purpose, function and

interfaces defined and their inter-relationships (internal and external) specified. Particular attention

has been given to ensuring generality - since the object is a reference architecture that can be

specialised for any given domain while retaining the core features for interoperability – while also

ensuring the possibility of evolution to meet changing requirements and changing opportunities

arising from new technology. Furthermore, the architecture design has been positioned in the

ecosystem of e-Is (such as GEANT, AARC2, EUDAT, PRACE, EOSC, OpenAIRE, and others) and the e-RIs

especially those in the ESFRI (European Strategic Forum for Research Infrastructures) roadmap

document.

This deliverable leads to the gap analysis (D3.2 M15), the software building blocks (D3.3 M24), and

the specification of enhanced VREs (D3.4 M30). This deliverable forms the basis for development of

the prototype and – based on that experience – the final architecture deliverable (D3.5, M36) will be

produced. In order to strengthen this first effort, we have also carried out an assessment of the

Reference Architecture, based on the requirements collected so far. The assessment aims at

validating the Reference Architecture with respect to the analysis that led to it: it consists in a series

of sequence diagrams of the most significant high-level use cases. These sequence diagrams show

that the set of components that we have derived at this stage, along with their interfaces, is able to

respond to the use cases.

The deliverable is structured as follows:

D3.1 Architecture Design

Page 10 of 89

● Section 2 presents an overview of the general methodology that has been applied in order to

produce the Reference Architecture, and of the specific approach that has been followed in

applying the methodology in the context of the VRE4EIC project;

● Section 3 presents the analysis of requirements that has been performed to derive the

components of the Reference Architecture and their interfaces;

● Section 4 gives the Reference Architecture as a set of UML component diagrams, highlighting

the interfaces provided and used by each component, and the methods that constitute these

interfaces. Each method is documented by its signature and a description of its behavior;

● Section 0 discusses the steps that an e-RI must take in order to join an existing e-VRE, running

an instance of the Reference Architecture;

● Section 6 presents an assessment of the Reference Architecture by relating the Reference

Architecture with ongoing work in the area of VREs and by presenting sequence diagrams

realizing the most important use cases taken from deliverable D2.2; overall, these show the

adequacy of the Reference Architecture from a functional point of view.

● Section 7 outlines the further development of the Reference Architecture within the VRE4EIC

project.

● Section 8 concludes.

● The Annex reports tables that document the steps of the architecture derivation process.

For compactness, references are resolved at the end of the Section where they occur.

D3.1 Architecture Design

Page 11 of 89

2 Methodology and approach
In literature, software architecture development targets the definition of a structured solution able

to satisfy the functional and non-functional requirements of an application domain. Thus the

development of a software architecture involves different points of views: the user, the system (the

IT infrastructure), and the business goals. For each of these areas, the key scenarios/requirements

should be identified as well as quality attributes. Then requirements should be refined into

architectural functions and mapped into specific architectural components or modules.

This process raises a series of criticalities and issues and should be carefully developed so as to avoid

architectural failures or incompleteness. For this reason, in the last 10 years different approaches for

architecture specification have been proposed, largely inspired from the Software Development Life

Cycle, SDLC [ISO/IEC 12207]. This is a well-defined, structured sequence of stages targeting the

specification and the successive development of the intended software product. It involves a series of

decisions based on a wide range of factors, and each of these decisions can have considerable impact

on the quality, performance, maintainability, and overall success of the application.

A typical SDLC includes different activities such as: understanding of business needs and constraints;

elicitation and collection of requirements; functional architecture design; architecture design;

implementation; testing; deployment; maintenance.

The order in which these activities are to be executed is usually defined into a specific software

development process such as Waterfall model, incremental model, RUP, V-model, iterative model,

RAD model, Agile model, Spiral model, Prototype model, to mention just a few [SE].

In the development of the Reference Architecture reported by the present deliverable, an

incremental software development process largely inspired by the RUP process [RUP, UP] has been

followed. In this Section, the main characterisation of the process to the specific exigencies of the

project constraints and activities are schematised. In particular, the Section provides details about

activities concerning the software architecture specification and design that are: elicitation and

collection of requirements; functional architecture design; architecture design.

The process characterisation has been performed in collaboration with the different partners,

considering the output of the other deliverables (see previous Section) and analysing the current

available proposals of VREs. As a consequence, the Reference Architecture specification provided in

this deliverable will document two views:

1. Component diagram: it describes the components necessary to implement the eVRE

functionalities. It visualizes the physical components in a system as well as the interfaces

among them.

2. Interaction diagrams: they describe the type of interactions among the different components

of the architecture and represent the part of dynamic behavior. We consider in particular

sequence diagrams which emphasize on time sequence the message exchange

In the remaining of this Section, the three main activities of the SDLC specifically characterized for

the eVRE architecture specification are presented.

2.1 Elicitation and collection of requirements

Elicitation and collection of requirements is a fundamental stage in the eVRE architecture

specification. From a technical point of view, it involves different stages such as [ISO/IEC/IEEE 29148]:

1. High-level use case definition: A representative of the stakeholder community presents the

business/mission drivers for the eVRE considering also quality attributes, security aspects.

D3.1 Architecture Design

Page 12 of 89

2. Use case definition: Stakeholders express scenarios representing their concerns about the

system prioritizing when possible the main ones.

3. Specification eVRE requirements: the main use cases are analysed and refined in more detail.

The focus is on specifying what a system should do (the functional requirements) and on how

the system should function (the non-functional, or quality, requirements) [ISO/IEC 25010,

ISO/IEC 25030].

In the context of the VRE4EIC project, this stage has been carried out by task 2.1. The Reference

Architecture development team has acquired the results of the stage in two different forms, each at

a different time. In particular,

● eVRE Requirements have been made available early in the development, and therefore they

have been used to derive the functional design, as illustrated next;

● High-level use cases and have been made available later, and therefore they have been used

to validate the Reference Architecture, as illustrated in Section 6.

2.2 Functional architecture design

During this activity, the identified requirements are analysed and one or more architectural functions

are derived. For assessment purposes, requirements mapping on the derived functions is also

performed.

In the context of the VRE4EIC project, this stage has been carried out by Task 3.1, as the first stage of

its development, and is documented in the next Section of this deliverable.

During its execution, several design guidelines have been followed [RUP,

https://msdn.microsoft.com/en-us/library/ee658124.aspx]. A synthesis of the most important ones is

provided below.

● Separation of functions: Isolate from the requirements different functions with as little

overlap in functionality as possible. The important factor is minimization of interaction points

to achieve high cohesion and low coupling.

● Aggregation of functions: Identify possible generalization or composition relations between

the isolated functions to improve the organization and readability of the functional

architecture design.

● Learn from similar projects: analyze similar projects and documentation so to derive an high

conceptual-level architecture description focusing mainly on high view of

modules/components and communications and interactions between them.

● Reduce Responsibility: Assign to each component or module the responsibility for only a

specific functionality or aggregation of cohesive functionality.

● Minimal Knowledge: Each component or module should be unaware of the internal details of

other components.

2.3 Architecture design

The functional architectural design should be refined and further decomposed so that identified

functional and nonfunctional requirements are completely satisfied. In particular, the allocation of

each of the identified functions to a component has to be completed. During this activity the

interfaces of the components, modules and sub-modules are also defined and documented.

In the context of the VRE4EIC project, this stage has been carried out by Task 3.1, as the second stage

of its development, and is documented in the Section 4 of this deliverable.

Also for carrying out this step several design guidelines have been followed [RUP,

https://msdn.microsoft.com/en-us/library/ee658124.aspx]. Here below a synthesis of the most

important ones is provided.

D3.1 Architecture Design

Page 13 of 89

Assess minimal knowledge: verify that each component does not rely on internal details of other

components. In particular check that each component method is called from at least another object

or component. Verify also that the method has information about how to process the request and, if

appropriate, how to route it to appropriate subcomponents or other components.

Avoid overloading of the functionality of a component: Avoid to overloaded components with many

functions and applying the single responsibility and separation of concerns principles.

Focus on communication between components: Understand the deployment scenarios and

determine if all components will run within the same process, or if communication across physical or

process boundaries must be supported—perhaps by implementing message-based interfaces.

Define a clear contract for components: Components and modules should define a contract or

interface specification that describes their usage and behavior clearly. The contract should describe

how other components can access the internal functionality of the component, module, or function;

and the behavior of that functionality in terms of preconditions, postconditions, side effects,

exceptions, performance characteristics, and other factors.

The validation of the architecture, also part of this stage, has been carried out as the last stage of

D3.1, and is documented in the Tables provided in the Appendix, in the way described in Section 3. In

particular traceability relationships able to provide associations between requirements and their

realizations are reported. These relationships will help either to assess the percentage/level of

requirements implemented into the architectures or to connect the various architecture

modules/component to the original requirement [RUP]. More details about the traceability

relationship between use cases, requirements and components, are provided in Section 3.

2.4 REFERENCES

[ISO/IEC 12207] International Organization for Standardization, “ISO/IEC/IEEE 12207:2008 - Systems

and software engineering -- Software life cycle processes,” ISO/IEC, Mar. 2008.

[ISO/IEC/IEEE 29148] International Organization for Standardization, “ISO/IEC /IEEE 29148:2011 -

Systems and software engineering — Life cycle processes — Requirements engineering,”

ISO/IEC/IEEE, Nov. 2011.

[SE] Ian Sommerville. Software Engineering. 9th Edition, Addison-Wesley 2011

[RUP] Rational Unified Process Best Practices for Software Development Teams, Rational Software

White Paper TP026B, Rev 11/01, July 2003

https://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/1251_bestpracti

ces_TP026B.pdf

[UP] Jacobson, I., Booch, G., Rumbaugh, J., Rumbaugh, J., & Booch, G. (1999). The unified software

development process (Vol. 1). Reading: Addison-Wesley.

[ISO/IEC 25010] International Organization for Standardization, “ISO/IEC 25010 - Systems and

software engineering — Systems and software Quality Requirements and Evaluation (SQuaRE) —

System and software quality models,” ISO/IEC, Mar. 2011.

[ISO/IEC 25030] International Organization for Standardization, “ISO/IEC 25030 - Software

engineering — Software product Quality Requirements and Evaluation (SQuaRE) — Quality

requirements,” ISO/IEC, June 2007.

D3.1 Architecture Design

Page 14 of 89

3 Analysis of requirements
As explained in Section 2, the components of the Reference Architecture have been derived based on

an analysis of the requirements collected in Task T2.1 of the project. Fig. 3.1 presents a UML class

diagram outlining the entities involved in this analysis and their relationships. In particular:

● The analysis started from the Requirements (yellow box in Figure 1). Each requirement has

been considered individually, and the functions (green box) required for its implementation

have been derived. The association between requirements and functions is documented in

Tables 2.1 and 2.2 given in Appendix. In particular, the requirements associated to a function

are given in the column labeled as “RequirementID” of these Tables.

● In order to ease the specification of functions, a set of generalised functions has also been

derived, which are included or specialised by functions, or which may be used as

preconditions by functions. Generalised functions are reported in Table 2 in Appendix, along

with their relations to functions.

● The components that are required for the implementation of functions have finally been

derived (T3:Components Involved). Components are detailed in Table 1, also given in the

Appendix; Table 1 also documents the sub-components derived for each component.

Figure 1 Entities and relationships involved in the analysis of requirements

As Figure 1 also shows, this analysis of requirements into functions and components connects to the

use cases (turquoise box) and the high-level use cases (purple box) derived in parallel by Task T2.2

and documented in deliverable D2.3. The connection is realized through requirements, and will be

used in Section 6 for the assessment of the Reference Architecture.

Overall, the schema shown in Figure 1 allows us to maintain the relationship between use cases,

requirements and components, thereby realizing the traceability of the Reference Architecture.

D3.1 Architecture Design

Page 15 of 89

4 The VRE4EIC Reference Architecture
This Section is the core of the deliverable, reporting the Reference Architecture design. It is divided

into two main subsections:

● Section 4.1 gives the rationale of the architecture, moving from an analysis of the notion of

Virtual Research Environment into a vision for the e-VRE architecture, consisting of the main

components of the Reference Architecture

● Section 4.3 gives the detailed specification of the components derived previously, presenting

provided and used interfaces of each component, and the signature of each method in an

interface

4.1 Rationale

4.1.1 Virtual Research Environment

In essence, the goal of a VRE system is to decouple Science from ICT complexity, by providing

researchers with a facility that takes care of ICT so allowing them to focus on their work. In this

sense, a VRE is a fundamental component of an e-RI (e-Research Infrastructure) as it makes the

resources of the e-RIs easily accessible and reusable to the community of researchers that owns the

e-RI. Here, by e-RI we mean “facilities, resources and related services used by the scientific

community to conduct top-level research in their respective fields”1 while resource indicates any ICT

entity that is of interest in an e-science community. Typically, a resource is owned by an e-RI that

provides an identity for the resource and manages it, making it accessible and re-usable. Examples of

resources are: datasets, workflows, algorithms, Web Services, computational or storage facilities,

cloud endpoints etc.

In general, a VRE is expected to:

● allow researchers to communicate with each other and to share and use the resources

available in the community’s e-RI

● allow researchers to advance the state of the art by building new resources as the result of

processing existing resources with the available tools. Such processing may be the application

of an individual piece of software to a dataset, such as the extraction of certain knowledge

from a single file; or, it may result from the execution of a complex workflow obtained by

combining available services, including other workflows

● allow research managers to apply economy of scale models to access and manage resources

that researchers or single organizations alone could not afford.

Moreover, a VRE can offer all of the above within an individual e-RI or across several e-RIs, the latter

option clearly requiring a level of interoperability that would empower researchers and managers in

ways that are only imaginable today.

The most advanced e-RIs have developed their own VRE, showing awareness of the crucial role that a

VRE can play for their researchers. Others are currently designing their VRE. However, the number of

currently existing or designed VREs is very limited; more importantly, these VREs show a great

heterogeneity in scope, features, underlying protocols and technologies, partially defeating the

interoperability goal that lies at the very heart of a VRE. One of the major goals of the VRE4EIC

project is to overcome this issue building an enhanced VRE (e-VRE) system whose main features are:

● Increase the quality of VRE User Experiences (UX) by providing user centered, secure, privacy

compliant, sustainable environments on searching data, composing workflows and tracking

data publications.

1 http://ec.europa.eu/research/infrastructures/index_en.cfm?pg=what

D3.1 Architecture Design

Page 16 of 89

● Increase the deployment of the VRE on different clusters of research infrastructures by

abstracting and reusing building blocks and workflows from existing VREs, infrastructures and

projects.

● Improve the contextual awareness and interoperability of the metadata across all layers of

the resources in the VRE.

● Promote the exploitation and standardisation of the VRE4EIC solution to different research

domains and communities.

● Provide interoperation across ‘silo’ e-RIs.

The main step to implement the above features is to create a Reference Architecture that can serve

as a guide for the development of interoperable VREs. Indeed, the Reference Architecture is one of

the two main outputs of the VRE4EIC project. In the following, we elaborate on the architectural

aspects of e-VRE in order to produce a vision that lies at the basis of the Reference Architecture,

specified in the rest of this Section.

4.1.2 A Vision for the e-VRE Architecture

In order to enable a VRE to make its resources available to the researchers that use the VRE, each e-

RI that participates to a VRE must provide descriptions of its resources, and such descriptions must be

rich enough in information to support the VRE services. This information may include the protocol

that must be used to interact with an e-RI service; the schema, size and operations allowed on a e-RI

dataset; the permission framework that must be adopted for authentication/authorization of the e-RI

users, and so on. This process is naturally divided into two steps, as depicted by Figure 2: the e-RI

resources are given at the bottom level since they are the basic assets that both e-RIs and VREs

operate on; at the next level up, the descriptions of these resources used by the e-RI services (e-RI

Resource descriptions) are given, next to the e-RI services using them; at the top level, the

descriptions of the e-RI resources used by the VRE services (VRE Resource descriptions) are given,

next to the VRE services using them. In both cases, the services mentioned are purely exemplificative.

Figure 2 Resources, e-RIs Services and VRE Services

D3.1 Architecture Design

Page 17 of 89

Resource descriptions are typically collected in Catalogues. So, the VRE needs to access the

catalogues of the participating e-RIs in order to discover the existing resources in the e-RI and obtain

enough information on these resources to create its own descriptions of them in its own catalogue.

In order to simplify the creation of the VRE catalogue, one could employ the same data model for

both the e-RI and the VRE descriptions. In fact, VREs that live within e-RIs follow this approach. In this

case, e-RIs and VRE Resource descriptions only differ for the type of information they contain, while

sharing the identity and the basic attributes of resource descriptions. However, this approach is not

feasible for VREs with many participating e-RIs, due to the fact that in general different e-RIs use

different data models to structure their catalogues. In this case, there are two main approaches to

create and maintain the VRE catalogue:

● The centralized approach (see Figure 3, left), in which there exists a VRE Catalogue used by

the VRE services for carrying out their own operations.

● The distributed approach (see Error! Reference source not found.Figure 3, right), in which

there is no VRE Catalogue, but the VRE accesses the e-RIs catalogues when the information

is needed.

Figure 3 Alternative approaches to the cooperation on e-RIs and a VRE

Each approach has its own pros and cons, as it is well known in distributed system design. In fact, the

availability of a VRE Catalogue facilitates all VRE operations that rely exclusively on resource

descriptions, such as resource discovery. For operations that require data access, such as data

discovery, the centralized approach can only alleviate the problem, by offering information for

executing part of the operation. On the other hand, the distributed approach makes it easier to have

complete information in real time, since it does not require propagation of updates to the Catalogue.

Our Reference Architecture chooses the centralized approach, because it facilitates one important

service, namely the construction of workflows across one or more RIs. The construction of workflows

requires numerous access to resource descriptions, followed by optimisation for parallel/distributed

operations; the centralized approach makes it possible to implement this access in the most efficient

way possible.

At a more general level, the Reference Architecture conforms to the multi-tiers view paradigm used

in the design of distributed information systems. Following this paradigm, we can individuate three

logical tiers in e-VRE, as shown in Figure 4:

D3.1 Architecture Design

Page 18 of 89

● The Application tier, which provides functionalities to manage the system, to operate on it,

and to expand it, by enabling administrators to plug new tools and services into the e-VRE.

● The Interoperability tier, which deals with interoperability aspects by providing functionalities

for: i) enabling application components to discover, access and use e-VRE resources

independently from their location, data model and interaction protocol; ii) publishing e-VRE

functionalities via a Web Service API; and iii) enabling e-VRE applications to interact each

others.

● The Resource Access tier, which implements functionalities that enable e-VRE components to

interact with eRIs resources. It provides synchronous and asynchronous communication

facilities.

Figure 4 Architectural tiers in a VRE

Figure 4 depicts the logical tiers of e-VRE and shows their placement in an ideal space between the e-

scientists that use the e-VRE and the e-RIs that provide the basic resources to the e-VRE.

Generally speaking a VRE system can be viewed as a dynamic framework; it “is the result of joining

together new and existing components to support as much of the research process as appropriate for

any given activity or role”2. To implement this fundamental non-functional requirement the e-VRE

system has been designed following a component-oriented approach.

According to this approach a system is composed by an integration infrastructure where a set of

software components can be deployed, these components implement the system functionalities and

potentially can be specified, developed and deployed independently of one another.

Based on these considerations and on the analysis of the requirements, for the basic integration

infrastructure of e-VRE we have individuated a set of basic functionalities grouped into six conceptual

components:

● The e-VRE management is implemented in the System Manager component. The System

Manager can be viewed as the component enabling Users to use the core functionalities of

the e-VRE: access, create and manage resource descriptions, query the e-VRE information

space, configure the e-VRE, plug and deploy new tools in the e-VRE and more.

● The Workflow Manager enables users to create, execute and store business processes and

scientific workflows.

2Fraser M. "Virtual Research Environments: Overview and Activity" 30-July-2005,

http://www.ariadne.ac.uk/issue44/fraser/

D3.1 Architecture Design

Page 19 of 89

● The Linked Data (LD) Manager is the component that uses the LOD (Linked Open Data)

paradigm, based on the RDF (Resource Description Framework) data model, to publish the e-

VRE information space - i.e. the metadata concerning the e-VRE and the e-RIs in a form

suitable for end-user browsing in a SM (Semantic Web)-enabled ecosystem.

● The Metadata Manager (MM) is the component responsible for storing and managing

resource catalogues, user profiles, provenance information, preservation metadata used by

all the components using extended entity-relational conceptual and object-relational logical

representation for efficiency.

● The Interoperability Manager provides functionalities to implement interactions with e-RIs

resources in a transparent way. It can be viewed as the interface of e-VRE towards e-RIs. It

implements services and algorithms to enable e-VRE to: communicate synchronously or

asynchronously with e-RIs resources, query the e-RIs catalogues and storages, map the data

models.

● The Authentication, Authorization, Accounting Infrastructure (AAAI) component is the

responsible for managing the security issues of the e-VRE system. It provides user

authentication for the VRE and connected e-RIs, authorisation and accounting services, and

data encryption layers for components that are accessible over potentially insecure

networks.

Figure 5 shows how these six components are distributed on the 3-tier space introduced above.

Figure 5 Conceptual components and logical tiers

D3.1 Architecture Design

Page 20 of 89

4.2 Component Overview

Every conceptual component will be realised by one or more actual software components and

possibly sub-components. The list of these components and subcomponents is given in the following

Table, also given as Table 1 of the Annexes. All components named in the Table will be specified in

the next Section.

Component Sub-components Description

AAAI
Component

 Manages security, privacy and trust aspects of the e-VRE
and its connections to the e-RIs

 Authentication Manages user authentication for the e-VRE and
connected e-RIs (single sign on), interfaces with external
identity provider services.

 Authorization Manages user authorisations (role based access) based
on (CERIF) metadata provided by the Metadata Manager.

 Accounting Manages accounting and billing of resources for which
payment is required, based on (CERIF) metadata provided
by the Metadata Manager.

 Encryption Provides encryption facilities.

Metadata
Manager (MM)

 Manages metadata about e-VRE entities: resource
descriptions, user descriptions, provenance information,
preservation metadata etc. (CERIF)

User Catalogue Contains user profiles and preferences

Resource Catalogue Contains metadata about resources available in e-VRE,
i.e. datasets, services, workflows, instruments, networks of
sensors, software applications etc

Preservation
Catalogue

Contains information related to the preservation process

Provenance
Catalogue

Contains metadata related to provenance

Interoperability
Manager (IM)

 Manages interactions with e-RIs

Query Manager (QM) Manages local and distributed queries, collects result sets

Data Model Mapper
(DMM)

Manages data and query format conversion

Adapters Components that synchronously interact with e-RIs
resources

D3.1 Architecture Design

Page 21 of 89

Message-Oriented
Middleware (MOM)

Manages asynchronous interactions with eRIs resources
using messaging protocols

e-VRE Web Services
(e-VRE WS)

Enable external applications to interact with e-VRE

Workflow
Manager (WM)

 Manages business processes and scientific workflows,
using the Metadata Manager for storing information on
workflows

Workflow
configurator

Provides functionalities to build/edit/store execution plans,
to control and monitor processing flows execution.

Workflow executor Manages workflow execution, including data staging

Workflow repository Provide functionalities to store and retrieve workflows,
workflows will be published using LD manager

Linked Data
Manager (LDM)

 Manages the publication of information in e-VRE as
Linked Open Data

SPARQL Endpoint Allows retrieving resources and services published by e-
VRE as RDF documents

LD API The LD API maps CERIF metadata records in RDF,
implements metadata enrichment of RDF records, i.e.
adds to records typed links to vocabularies and thesaurus
entries, Implements content negotiation

System
Manager (SM)

 Implements functionalities to define and manage the VRE,
e.g. specify the resources, specify the apps, and to deploy
the defined VRE in the available resources.

Node Manager (NM) Implements the functionalities to deploy, manage and run
an instance of e-VRE on a specific hardware

User Manager (UM) Manages user profiles and provides collaboration/

communication functionalities for users. It provides the

functionalities to add/update/remove user profiles, to set
up users permissions, to manage users preferences, to
configure users working environments

Resource manager
(RM)

Manages resource information implementing
add/update/remove operations on resource descriptions,
associating resources to security policies, etc.

App Manager (AM) Provides functionalities to deploy and manage applications
that operate on e-VRE resources. It can be used also to
embed applications such as Wiki or forums etc.

D3.1 Architecture Design

Page 22 of 89

4.3 Components in detail

This Section describes each component introduced in the previous Section, providing:

● the methods in each interface of the component, along with the signature of each method

● the sub-components of the components, illustrated in a component diagram showing, as

before, the interfaces provided and used by each sub-component.

● Interfaces to systems outside of VRE4EIC: e-Research Infrastructures (e-RIs) and e-

Infrastructures (e-Is)

These specifications do not define Types in details; this is postponed until the final architecture will

be released.

As general principle, CERIF entities will be used to model types when possible. For instance:

UserCredentials, UserProfile, and UserQuery will be modeled starting from the corresponding CERIF

entities. Appropriate classes will be created for the types that cannot be modeled by CERIF entities.

4.3.1 User Manager component

The User Manager is the component responsible for managing User Profiles, providing

Authentication mechanisms and enabling users to receive Notifications for events they have

subscribed.

To perform its activities the User Manager interacts with:

● Metadata Manager to store/retrieve/update User Profiles and Subscriptions/Notifications

● AAAI to implement authentication, encryption, authorization and accounting tasks

● AuthenticatorApp to implement login via external authenticator

The User Manager component provides four interfaces. Each such interface is described in a separate

paragraph below, including a table providing the methods of the interface. Each method is described

by naming the operation, the parameter list, and the return type of each method. In addition, the

CERIF entity involved in the method is provided, if any.

D3.1 Architecture Design

Page 23 of 89

4.3.1.1 User Manager: User management interface description

Operation Parameter-list Return type Map to

CERIF entity

Notes

createUserProfile user:UserProfile ReturnValue UserProfile Creates a user profile

updateUserProfile userId:String,

user:UserProfile

ReturnValue UserProfile Updates the profile

userId

removeUserProfile userId:String ReturnValue Deletes the profile userId

getUserProfile userId:String UserProfile UserProfile Retrieves the profile

userId

getUserProfile creds:UserCredentials UserProfile UserProfile Gets the profile with

provided credentials

getUserProfile query:UserQuery UserProfile[0..*] UserProfile Gets a list of profiles

(wildcards allowed in

query).

4.3.1.2 User Manager: Notification management interface description

Events related to RI resources are captured via Resource Manager and registered in Metadata

Manager. The User Manager uses the Metadata Manager to check status changes.

Operation Parameter-list Return type Map to CERIF

entity

Notes

subscribeEvent userId:String,

events:EVREEvent[0..*]

ReturnValue EVREEvent Subscribes

to a list of

events

checkEvent userId:String, eventId:String ReturnValue Returns the

status of the

specific

event

checkEvents userId:String ReturnValue[0..*] Returns the

status of all

subscribed

events

getSubscribedEvents userId:String EVREEvent[0..*] EVREEvent Returns list

of events

subscribed

by userId

D3.1 Architecture Design

Page 24 of 89

4.3.1.3 User Manager: login interface description

The idea is that VRE4EIC authentication services could be based on scoped credentials assigned to a

User or an Entity and controlled by authenticators (https://en.wikipedia.org/wiki/Authenticator).

Please note that we are talking of the authentication process between an eVRE user and the eVRE

system, it will ‘wrap’ the protocols adopted by VRE4EIC AAAI infrastructure.

The scoping of the credentials must be enforced jointly by a User Agent implementing the VRE4EIC

authentication API and an authenticator that holds the credential, by constraining the availability and

usage of credentials.

Scoped credentials must be located on authenticators, which can use them to perform operations

subject to user consent.

According to outcome of D2.1 we should have two types of authenticator:

• Authenticators located in the same device (e.g., smart phone, tablet, desktop PC) as the user

agent is running on.

• Authenticators operate autonomously from the device running the user agent, and accessed

via network or other protocols. This last part is needed mainly to implement requirements

about external instruments or devices (DRQ2, DRQ4, DRQ5…)

To implement this behaviour we designed three interfaces: the login and the Authenticator

Management interfaces provided by the User Manager component and the Authentication interface

provided by a component called AuthenticatorApp that implements the client side functionalities of

the authentication mechanism.

Operation Parameter-list Return type Map to

CERIF

entity

Notes

login creds:UserCredentials ReturnValue

login authenticatorId:String,

deviceId:string

ReturnValue Uses external

Authenticator (see:

UC 21) for login

logout userToken:String ReturnValue Signs out the user

D3.1 Architecture Design

Page 25 of 89

4.3.1.4 User Manager: Authenticator Management interface description

Operation Parameter-list Return type Map to

CERIF

entity

Notes

registerAuthenticator creds:UserCredentials,

authenticatorId:String

ReturnValue Register external

authenticator

removeAuthenticator creds:UserCredentials,

authenticatorId:String

ReturnValue Remove external

authenticator

4.3.2 AuthenticatorApp: Authentication interface description

Operation Parameter-list Return type Map to

CERIF

entity

Notes

authenticate reqInfo:info ReturnValue The reqInfo

contains

information about

device requesting

authentication and

the eVRE service

that has been

requested.

synchCredentials authenticatorId:String,

creds:UserCredentials[1..*]

ReturnValue Synchronize

credentials with the

eVRE

D3.1 Architecture Design

Page 26 of 89

Return Value

The class diagram below shows the topmost levels of a type hierarchy of return values.

In the diagram, the main ReturnValue type returns a message and a Boolean reporting if the

operation has been executed correctly or not. It is extended by four subtypes reporting the relevant

information that for a specific operation, for instance the LoginReturnValue type returns also the

token identifying the user and the result of the authentication.

4.3.3 Resource Manager component

The Resource Manager is the component responsible for managing information about resources

provided by RIs and other infrastructures, it communicates with remote resources via Adapters or

asynchronous messaging. The Resource Manager interacts with:

• Metadata Manager: to store, manage and retrieve information about resources

• AAAI component: to check permissions when interacting with external resources and to use

encryption functionalities if needed

• Model Mapper Component: to map data when interacting with external resources

• RI Resource Adapter: for synchronous interactions with the external resource provided by a

RI

• MOM component for asynchronous interactions with the external resource

D3.1 Architecture Design

Page 27 of 89

4.3.3.1 Resource Manager: Resource management interface description

Operation Parameter-list Return type Map to

CERIF

entity

Notes

addResourceProfile resource:ResProfile ReturnValue ResProfile

updateResourceProfile resourceId:String,

resource:ResProfile

ReturnValue ResProfile

removeResourceProfile resourceId:String ReturnValue

getResourceProfiles query:ResQuery ResourceProfile[0..*] ResProfile Wildcards can be specified

in the query

getResourceProfile resourceId:String ResourceProfile ResProfile

isResourceAvailable resourceId:String ReturnValue Checks if the resource is

currently available in the RI,

if RI provides this service.

Depending on the RI service

the return value can include

info like: ETA for downtime,

current use rate etc

D3.1 Architecture Design

Page 28 of 89

4.3.4 Workflow Manager Component

The Workflow Manager is responsible for managing both Business and Scientific workflows3.

In our vision Scientific Workflows represent experiments conducted by scientists, therefore the WF

component will provide a workflow repository and interoperate with other workflow repositories to

facilitate the reuse and reproducibility of scientific experiments. Information about workflows are

stored in the Metadata Manager and will be published also as Linked Open Data via LD Manager.

3 Bertram Ludäscher, Mathias Weske, Timothy McPhillips, and Shawn Bowers. Scientific workflows: Business as

usual?,7th Intl. Conf. on Business Process Management (BPM), LNCS 5701, Ulm, Germany, 2009

D3.1 Architecture Design

Page 29 of 89

4.3.4.1 Workflow Manager: Wf Repository Access interface

Operation Parameter-list Return type Map to CERIF entity Notes

getWF idWF:String WorkFlowDescription WorkFlowDescription

getWFs idWFs:String[1..*] WorkFlowDescription[0..*] WorkFlowDescription

getWFs wfQuery WorkFlowDescription[0..*] WorkFlowDescription Wildcards

allowed

4.3.4.2 Workflow Manager: Wf management interface

Operation Parameter-list Return type Map to CERIF entity Notes

createWF wf: WorkFlowDescription ReturnValue WorkFlowDescription

updateWF idWF:String ReturnValue

deleteWF idWF:String ReturnValue

getWFs idWFs:String[1..*] WorkFlowDescription

[0..*]

WorkFlowDescription

executeWF idWF:String ReturnValue

stopWF idWF:String ReturnValue

pauseWF idWF:String ReturnValue

getWFStatus idWF:String ReturnValue

D3.1 Architecture Design

Page 30 of 89

4.3.5 Message Oriented Manager (MOM) component

The MOM component is responsible for implementing asynchronous interactions with eRIs

resources. It implements the interactions supporting messages exchanging between eRIs and eVRE

components.

4.3.5.1 MOM: Topic interface

Operation Parameter-list Return type Map to CERIF entity Notes

getTopics query:TopicQuery Topic[0..*] Topic Wildcards

allowed

createTopic topic:Topic ReturnValue Topic

updateTopic topicId:String ReturnValue

removeTopic topicId:String ReturnValue

4.3.5.2 MOM: Message Management interface

Operation Parameter-list Return type Map to CERIF

entity

Notes

addMessage msgs:Message[1..*] Return values Routing info stored

in messages

getMessages topicIds:String[1..*] Message[0..*] Message

getMessages topicId:String[1..*],

query:MessageQuery

Message[0..*] Message Wildcards allowed

getTopics query:TopicQuery Topic[0..*] Topic Wildcards allowed

subscribeTopic topicIds:[1..*] ReturnValue

removeSubscription topicIds:[1..*] ReturnValue

checkTopic topicIds:[1..*] ReturnValue

D3.1 Architecture Design

Page 31 of 89

4.3.6 Resource Adapter

The Resource Adapter indicates a set of components: an Adapter is a software module that wraps an

external eRI resource; essentially Adapters reduce dependency of eVRE from eRI resources.

The Adapter acts as a middleware between an eVRE component and an eRI resource, it:

● Receives requests from the eVRE component and executes them by calling a service

managing the resource

● Waits for the answer

● Returns the answer to the eVRE component

Adapters are specific for eRI resources and use synchronous standard protocols to interact with the

resource. The adapter could be deployed in the eVRE system or in the eRI environment; it could also

be split in subcomponents.

Interfaces of Adapters depend on the resource they wraps.

4.3.7 APP Manager Component

The goal of this component is to provide functionalities to enable external applications to be

embedded and used into the E-VRE system. Generally speaking this means that such a component

should implement a set of facilities to manage:

1. the deployment of external applications in E-VRE

2. the life-cycle of these applications (install/start/stop/update/uninstall)

3. the publication and the discovery of these applications

The idea is to built the App Manager as a lightweight, unobtrusive component that will interact with

external applications to track their lifecycle and their usage.

The App Manager is a crucial component for E-VRE, we plan to build it as a lightweight, unobtrusive

software module that interacts with external applications to track their lifecycle and their usage.

However, creating an App Manager able to automatically manage lifecycle and usage for every

possible external application embedded in the EVRE is not feasible: we’ll individuate a set of

standards and technologies and implement the App Manager for applications adopting those

standards (for instance Servlet level 3 specification is a good candidate), applications not

implementing the selected technologies will be embedded by extending the App manager with ad

hoc sub components.

D3.1 Architecture Design

Page 32 of 89

4.3.8 Metadata Manager (MM) Component

The Metadata Manager is responsible for storing, manipulating and exposing metadata information

about various resources. It contains a set of catalogues and repositories and stores information with

respect to a set of predefined schemas.

The Metadata Manager component contains a set of subcomponents that deal with particular

functionalities: the Thesaurus, the Provenance Manager, the Preservation Manager etc.

The Metadata Manager exposes its contents through the GetMetadata interface. The QueryManager

for instance uses this particular interface when searching for particular resources.

4.3.8.1 Metadata Manager: GetMetadata interface

Operation Name Parameter-list Return type Map to

CERIF

entity

Notes

getResourceMetada

ta

String: resourceURI
Collection<String>

graphspaces

Collection<Triple>

results
 The method takes as input

the URI of a resource, and

the corresponding

graphspaces and returns

the contents of the

metadata catalogue as a

collection of triples (i.e. <S,

P, O>, where S=subject,

P=predicate and O=Object).

getResourceMetada

taUsingType

String: resourceURI
Collection<String>

graphspaces
Enum: metadataType

Collection<Triple>

results
 The method is similar in

spirit with

getResourceMetadata

method, however it also

contains a type parameter

to specify the exact

metadata type that is

requested (i.e.. owner of a

resource).

searchForMetadata

Collection<String>

queryTerms
Collection<String>

graphspaces

Collection<Triple>

results
 The method takes as input a

set of queryTerms and the

graphspaces to search for

and searches in the

metadata catalogues for

these terms. Finally it

returns the results as a

collection of triples.

The Metadata Manager also contains the ManageMetadata interface that allows users to add new

information or to update existing information from the metadata catalogues. This interface is

exploited from almost all the sub-components of the SystemManager (ResourceManager,

UserManager, etc.). These components invoke the appropriate methods of the interface every time

some entry needs to be updated; the rationale is that each Manager (from the System Manager) will

update the appropriate metadata catalogue (i.e., the User Manager will be able to update only the

metadata about users). However, in some cases the ManageMetadata can be used by particular

users or agents (having an administrative role) for updating information in the metadata catalogues.

D3.1 Architecture Design

Page 33 of 89

Furthermore, the LDManager uses this interface for adding metadata information as regards to the

publishing of Data also as Linked Open Data.

4.3.8.2 Metadata Manager: ManageMetadata interface

Operation Name Parameter-list Return type Map to

CERIF

entity

Notes

insertUpdateMetad

ata
String: resourceURI
Enum: metadataType
String: metadataValue
String: graphspace

void The method updates (or

adds if such information

does not exist) particular

information about the

metadata of a resource. The

type of the metadata and

the corresponding value are

also given in the

parameters list. The new

triples is being added under

the given graphspace.

deleteMetadata String: resourceURI
String: graphspace

void This methods deletes

information about a specific

metadata resource from

the given graphspace.

Apart from the interfaces of the Metadata Manager component, there is also the ThesaurusAPI

interface, offered by the Thesaurus subcomponent, which is being used by the Query Manager and

the UI components to retrieve suggested terms during search and spell checking. In addition, the

ProvenanceAPI interface, offered by the Provenance Manager subcomponent, enables the storing of

information about Queries and workflows and is being used by the Workflow Manager and the Query

Manager.

4.3.8.3 Thesaurus Component: ThesaurusAPI interface

Operation Name Parameter-list Return type Map to

CERIF

entity

Notes

getSuggestedTerms

String: queryTerm Collection<String>

suggestedTerms
 The method takes as input a

queryTerm, and searches in

the catalogue maintained by

the Thesaurus component for

suggested terms. For instance

if the queryTerm is “inf” then it

will return (among others) the

terms “infrastructure”,

“inference”, etc.

getSimilarTerms

String: queryTerm
int: editDistance

Collection<String>

similarTerms
 The method takes as input a

queryTerm and a value for the

editDistance function to

perform spell checking. It

returns a ranked collection of

potential corrections for the

given query term.

D3.1 Architecture Design

Page 34 of 89

4.3.8.4 Provenance Component: ProvenanceAPI interface

Operation Name Parameter-list Return type Map to

CERIF

entity

Notes

getProvenanceMeta

data

String: resourceURI Collection<Triple>

results
 The method takes as input

the URI of a resource and

returns all the available

provenance metadata of

the resource as a collection

of triples.

getProvenanceMeta

dataUsingType

String resourceURI
Enum: metadataType

Collection<Triple>

results
 The method is similar in

spirit with

getProvenanceMetadata,

however the current one

uses one more parameter

for defining the type of the

metadata that is requested,

and returns the facts about

provenance of the given

resource as a collection of

triples.

updateProvenance

Metadata

String: resourceURI
Enum: metadataType
String:

metadataValue

void The method updates (or

adds if such information

does not exist particular

information about the

provenance of a resource.

The type of the metadata

and the corresponding

value are also given in the

parameters list.

We should note that there is no direct connection between the Mapping Manager (subcomponent of

the Model Mapper) and the Metadata Manager. The reason is that the Mapping Manager (as it is

shown in the corresponding diagram) is being exploited by the Query Manager directly whenever it is

required to perform mappings (over data or over a query).

D3.1 Architecture Design

Page 35 of 89

D3.1 Architecture Design

Page 36 of 89

4.3.9 The Query Manager (QM) Component

The Query Manager is the component responsible for managing the querying capabilities of the

infrastructure. This component receives as input a set of query requirements (in terms of keywords,

query preferences, dataset catalogues, etc.) and manages the entire process of

● preparing the query,

● splitting it into subqueries,

● submitting the subqueries into the proper systems,

● receiving the results, and

● integrating them in order to send them to the user as a unified set.

The QueryManager is a core component (a super-component) that aggregates and exposes the

functionalities of various subcomponents (i.e., Query Analyzer, Query Mediator, Query Integrator,

Query Publisher, etc.).

The QueryManager exposes its functionalities through the SearchAPI interface. This interface

contains the appropriate methods that take as input the query requirements (i.e., query terms,

dataset catalogues to be searched, query preferences, etc.) given by a user/agent and, after

performing all the query-related functionalities, it returns the results back to the user/agent. The

SearchAPI can therefore be used from the eVRE WS and UI components (we should also stress that

the latter components are responsible for validating that the user/agent has the rights to submit a

query).

After receiving a request (through the SearchAPI interface), the QM determines that the query

should split into subqueries with respect to the schema of the target catalogues. For this reason, it

communicates with the ModelMapperQuery interface of the ModelMapper component, for

translating the query into the appropriate subquery with respect to the target schema of the

corresponding catalogue.

Afterwards, the appropriate subqueries are sent to the corresponding external resources through the

GetRequest API of the MessageOriented component. After retrieving the results from the various

resources, the QM exploits the ModelMapperData interface of the ModelMapper component, in

order to transform them with the proper mappings into a common format.

Apart from the above, the QM can also search for data that has been published on the infrastructure

as LinkedData through the GetDataAPI of the LDManager, and for data that exist in the metadata

catalogue through the getMetadata interface of the MetadataManager component.

Finally, we should note that the QM also communicates with the ThesaurusAPI and ProvenanceAPI

of the corresponding subcomponents of the MetadataManager for performing automatic

corrections of keywords and recording the query evaluation provenance, respectively.

D3.1 Architecture Design

Page 37 of 89

4.3.9.1 Query Manager Component: SearchAPI interface

Operation Name Parameter-list Return type Map to

CERIF

entity

Notes

searchSimple

Collection<String>

queryTerms
Collection<Pair<Strin

g,String>>

preferences

Collection<Result>

results
 The method takes as input a

set of query terms, and a

set of preferences -

expressed as key-value

pairs (i.e. perform ranking,

filtering, etc.)- and searches

locally, and finally returns a

collection of results.

searchSimpleWithin

Range

Collection<String>

queryTerms
Collection<Pair<Strin

g,String>>

preferences
int: startOffset
int: limit

Collection<Result>

results
 The functionality is similar

in spirit with searchSimple

method, with the only

difference that it takes as

input the startOffset and

the upper limit, to support

paging of results (i.e.

starting from result 1 bring

100 results).

searchFederated

Collection<String>

queryTerms
Collection<String>

dataSources
Collection<Pair<Strin

g,String>>

preferences

Collection<Result>

results
 The method takes as input a

set of queryTerms, a set of

data sources, and a set of

preferences -expressed as

key-value pairs- and

performs a federated

search over the given data

sources, and finally returns

a collection of results.

searchFederatedWit

hinRange

Collection<String>

queryTerms
Collection<String>

dataSources
Collection<Pair<Strin

g,String>>

preferences
int: startOffset
int: limit

Collection<Result>

results
 The functionality is similar

in spirit with

searchFederated method,

with the only difference

that it takes as input the

startOffset and the upper

limit, to support paging of

results (i.e. starting from

result 1 bring 100 results).

D3.1 Architecture Design

Page 38 of 89

D3.1 Architecture Design

Page 39 of 89

4.3.10 The Model Mapper Component

The Model Mapper component is responsible for performing the required mappings and storing the

particular information (the mappings themselves) in its repository.

The component contains the following subcomponents; (a) the Mapping Manager, which is

responsible for adding and manipulating the available mappings, (b) the Data Transformer that

exploits the available mappings for transforming a data source and (c) the Query Translator for

performing query translations.

The Model Mapper component exposes its functionalities as regards the translation of queries

through the ModelMapperQuery interface. This interface is being used from the QueryManager

component (whenever it is required to translate a query with respect to a different model/ schema/

format).

4.3.10.1 Model Mapper Component: ModelMapperQuery interface

Operation Name Parameter-list Return type Map to

CERIF

entity

Notes

transformQueryExp

ression

String: initialQuery
String: targetSchema

String: queryExpr This method takes as input

a query and a description of

the target schema and is

responsible for

transforming it so that it

can be submitted to the

target system. The method

returns the expression of

the query with respect to

the target format.

It also has a ModelMapperData interface that exposes the functionalities as regards the data

transformation, which is being used from the QueryManager component (whenever it is required to

transform some data - i.e. results- and deliver them in an homogeneous way to the users/agents),

the WorkflowManager and the SystemManager components.

4.3.10.2 Model Mapper Component: ModelMapperData interface

Operation Name Parameter-list Return type Map to

CERIF

entity

Notes

transformData

String: originalData
String: targetSchema

String:

transformedData
 This method takes as input

the textual description of

some data a query and a

description of the target

schema and is responsible

for transforming them with

respect to the target

schema. The method

returns the textual

description of the

transformed data.

D3.1 Architecture Design

Page 40 of 89

Finally the ModelMapper component has a MappingManager interface that contains all the

functionalities as regards the manipulation of mappings.

4.3.10.3 Model Mapper Component: MappingManager interface

Operation Name Parameter-list Return type Map to

CERIF

entity

Notes

getMapping

String: mappingID String:

mappingExpression
 The method takes as input

the ID of a mapping and

returns the textual

representation of the

mappings (i.e. as an X3ML

file)

addMapping

String: mappingID
String:

mappingExpression

void The method takes as input a

textual representation of a

mapping (i.e. a X3ML

[X3ML_Framework_IJDL_20

16] file), and an ID and

stores the mapping in the

MappingManager

catalogue.

updateMapping

String: mappingID
String:

mappingExpression

void The method takes as input a

textual representation of a

mapping (i.e. a X3ML file),

and an ID and updates an

existing mapping in the

MappingManager

catalogue.

deleteMapping

String: mappingID void The method takes as input a

textual representation of a

mapping (i.e. a X3ML file),

and removes the mapping

from the MappingManager

catalogue.

D3.1 Architecture Design

Page 41 of 89

4.3.11 The LD Manager Component

The LD Manager is the component responsible for publishing resource descriptions with respect to

the principles of Linked Open Data. The process of publishing contains the transformation of

resources, the generation of (resolvable) URIs, their linking, etc.

Since the main functionality of the component is to support the publishing of metadata, it contains a

PublishLDAPI interface. This interface is being exploited from the WorkflowManager, the eVRE WS

and the UI components whenever it is requested to publish some data as Linked Open Data. In these

cases in order to fetch the particular data that will be published it exploits the SearchAPI of the

QueryManager component. In order to support the transformation of the given data the LDManager

uses the ModelMapperData interface which is given from the ModelMapper component.

D3.1 Architecture Design

Page 42 of 89

4.3.11.1 LDManager Component: PublishLDAPI interface

Operation Name Parameter-list Return type Map to

CERIF

entity

Notes

publishLinkedData String:

publicationSourceURI

void This method takes as input

the publicationSourceURI in

which the data will be

published (i.e a named

graph uri)

Moreover, the published data are exposed through the SPARQL-API interface.

4.3.11.2 LDManager Component: SPARQL-API interface

Operation Name Parameter-list Return type Map to

CERIF

entity

Notes

querySPARQL

String: sparqlQuery
Format: returnType

String: sparqlResults The method takes as input a

SPARQL query, and the type

of the returned results (i.e.

XML, JSON, HTML, etc.), it

executes the query and

returns the results with

respect to the given return

type.

D3.1 Architecture Design

Page 43 of 89

4.3.12 eVRE WS component

This component implements the Web Service API for eVRE architecture. It is a crucial component, it is

used by external agents (applications) to access the functionalities of the eVRE. It could be also used

as service level integration middleware for expanding the e-VRE with new functionalities.

D3.1 Architecture Design

Page 44 of 89

4.3.13 AAAI Component

This component implements the authentication, authorisation, accounting and data encryption

backend services for the eVRE architecture. It interfaces with external identity providers to enable

single sign on across the various connected infrastructures. It delegates the login and other user

interface services to the User Manager component described above. For any authenticated user, it

provides authorization services by using attributes provided by the external identity provider (if any).

These will be extended by using (CERIF) information by interfacing with the Metadata Manager

component.

D3.1 Architecture Design

Page 45 of 89

Operation Name Parameter-list Return type Map to CERIF

entity
Notes

authenticateUser creds:UserCredentials UserProfile UserProfile Delegate to

federated identity

service

authorizedUser creds:UserCredentials

resourceId:String,

operationType:String

Boolean Return true if user

in her current role

is authorized to

perform given

operation on given

resource

billUser creds:UserCredentials

resourceId:String,

amount:Number

Invoice Bill user for using

amount units of a

given resource

encryptData encryption:Scheme
plainData

EncryptedData Encrypt data using

given scheme. Note

that in the actual

implementation,

we expect this

function to be

embedded in the

components that

need them

4.4 References

[X3ML_Framework_IJDL_2016] Y. Marketakis, N. Minadakis, H. Kondylakis, K. Konsolaki, G.

Samaritakis, M. Theodoridou, G. Flouris, M. Doerr. X3ML Mapping Framework for Information

Integration in Cultural Heritage and beyond. International Journal on Digital Libraries, pp 1-19,

Springer, DOI 10.1007/s00799-016-0179-1, May 2016.

D3.1 Architecture Design

Page 46 of 89

5 Joining an eVRE instance
This Section presents a significant usage scenarios of the Reference Architecture, focussing on the

operations that an e-RI must perform in order to join an existing eVRE as a participating e-RI.

The steps that the e-RI must consider planning and executing can be grouped in three main phases:

analysis, preparation and execution phase. These three phases are ordered in time as shown in the

Figure below. Collectively they form a cycle that can be executed several times over time.

The analysis phase is mainly carried out by the management of the e-RI, and aims at establishing the

objectives that the e-RI aims at achieving by joining the eVRE. More specifically, what are the

resources, chiefly data and services, the e-RI wants to (1) access from the eVRE; and (2) share to the

eVRE, that is made available to the eVRE. Concerning the first point, special consideration must be

given to the resources that the e-RI wishes to have available from the eVRE, either internal, that is

directly provided by the eVRE, or external, that is mediated by the eVRE. Concerning the second

point, the e-RI must take into consideration that each resource it will make available to the eVRE will

have to be: (a) endowed with a description that is as complete as possible with respect to the eVRE

requirements, and of adequate quality, and (b) made accessible to the eVRE, which implies adding

code, in the form of , e.g., an adapter or a wrapper.

These considerations will allow the e-RI management to perform a cost/benefit analysis that would

allow them to take an informed decision as whether or not to join the eVRE. After deciding to join,

the e-RI enters into the preparation phase.

The preparation phase is carried out by the IT management of the e-RI, and its central task is to

conduct a negotiation with the eVRE IT manager for agreeing on several important issues, such as:

● The e-RI’s trust/security/privacy policies are compliant with those supported by the eVRE

that it wishes to join. This includes the authentication, authorization and access interfaces

that the eVRE requires from the e-RI.

● The descriptions of the resources that the joining e-RI wishes to share through the eVRE are

rich enough for the Catalogue of the eVRE and automatically transformable into the eVRE

Catalogue format.

D3.1 Architecture Design

Page 47 of 89

● The alignment between the e-RI catalogue(s) and the eVRE catalogue is ensured by the e-RI

according to the protocols and interfaces indicated by the eVRE.

● The resources that the joining e-RI wishes to share through the eVRE are accessible according

to the protocols and interfaces indicated by the eVRE.

Once successfully concluded, the negotiation phase produces a plan of the actions that the e-RI must

undertake in order to implement the negotiated agreements. This plan will be executed by the IT

specialists in the execution phase.

The execution phase includes at least the following operations:

● The definition of the mappings from the e-RI catalog data model to the eVRE catalog data

model

● The implementation of an aggregation infrastructure for the extracting, transforming (based

on the previously defined mapping) and loading the e-RI resource descriptions from the e-RI

Catalogue into the eVRE Catalogue, so that there is the best possible alignment between the

two.

● The implementation of the resource access protocols and interfaces negotiated with the

eVRE.

The cycle can be re-entered any time, from anyone of its phases, depending on the changes that

occur in the e-RI. Policy changes may require to re-execute the analysis, leading to a new cost/benefit

analysis with a possibly different outcome. Changes in the eVRE technological architecture may

require a new preparation phase leading to a new plan. Changes in the e-RI technological

architecture may require a new execution phase.

D3.1 Architecture Design

Page 48 of 89

6 Assessment of the architecture
This Section assesses the Reference Architecture by relating the Reference Architecture and vision of

e-VRE to the ongoing work in the area of VRE, and then by presenting sequence diagrams of the most

important use cases, thereby showing the adequacy of the Reference Architecture from a functional

point of view.

6.1 Introduction

In designing the e-VRE we have taken cognisance of past and ongoing work on:

1. VREs (also known as SGs (Science Gateways dominantly in North America) and as VLs (Virtual

Laboratories, dominantly in Australasia);

2. e-RIs: e-Research infrastructures providing access to facilities and having assets of data,

software, equipment, computing, users, publications etc.

3. e-Is: infrastructures which form the common set of utilities to be used by e-RIs; examples are

GEANT, AARC2, EUDAT, EGI, PRACE, OpenAIRE.

The useful booklet produced by DG-CNECT on research infrastructures is a useful reference

resource4. The VRE4EIC Project Proposal already classified the e-infrastructure scene into the

components above.

6.1.1 VREs

There are 3 other H2020 RIA projects concerned with VREs: EVER-EST (geoscience); BlueBridge (blue,

dominantly marine) and West-LIFE (Bio). These are at an early stage of development like VRE4EIC and

so our considerations have relied on (a) information from the project websites (b) personal contacts

especially with EVER-EST (where already joint meetings have taken place) and Blue Bridge (where the

major partner is the same organisation (but a different group) as the architecture developers in

VRE4EIC). There are significant differences in approach:

1. VRE4EIC is producing a reference architecture (and prototype demonstrator) that can bridge

across e-RIs (and hence underlying e-Is) in a multidisciplinary manner; the other projects are

restricted to particular domains;

2. BlueBridge produces a VRE with limited capabilities (compared with those of VRE4EIC in

Table 2 of the DoA) and is tightly coupled to the underlying e-RIs;

3. EVER-EST is using research objects; this binds data and code in a particular way that restricts

openness and interoperability, which is unacceptable for the objectives of VRE4EIC.

Nonetheless we are working together and believe there are opportunities for co-

development.

4. WEST-LIFE does not give much information on the web pages. It appears to be centered on

EGI and presumably plans to use their existing technologies which are lower-level

modularised components for self-assembly by the e-RI to form a VRE. Nonetheless we are

trying to establish more detailed technical contacts.

4 https://ec.europa.eu/digital-single- market/en/news/e-infrastructures- making-europe- best-place-

research-and- innovation

D3.1 Architecture Design

Page 49 of 89

Outside of these H2020 projects for VRE4EIC participants the scientific coordinator has initiated a

RDA IG (research Data Alliance Interest Group) jointly with EVER-EST. This allows us to evaluate the

work on SGs and VLs. Furthermore, the VRE4EIC scientific coordinator is on relevant program

committees for workshops and conferences on SGs.

In general SGs are portals to datasets. Some have analytical, visualisation and simulation capabilities.

Some provide access to –and steering of – equipment. Some provide access to specialist computing

resources and some provide collaboration tools. However – in contrast to VRE4EIC - in general they

are constructed on top of one or more – e-RIs in a particular domain.

VLs have taken a different approach. VLs are constructed from a pool of general software modules,

available datasets and user groups. Again each VL tends to be domain specific and linked with one or

a small number of e-RIs. Nonetheless VRE4EIC will continue to track the evolution of VREs, SGs and

VLs and cooperate wherever possible to increase the potential of interoperability in an open research

environment.

6.1.2 e-RIs

VRE4EIC has within the consortium representation from ENVRIplus and EPOS: two large e-RIs in the

environmental and geoscience domains. These were chosen because of an intersection of personnel

in the partners thus building on pre-existing relationships.

However, as indicated in the project proposal, the partners between them have some knowledge of

the major EC-funded e-RIs, particularly those of ESFRI. In D2.1 we characterised e-RIs from multiple

domains to ensure that we understood their capabilities and offerings. A key aspect of VRE4EIC is to

produce an e-VRE which does not duplicate the functionality of the e-RIs but builds upon them,

orchestrating and facilitating user access and utilisation of them - subject to rights, security, privacy

and performance considerations.

In general the e-RIs provide portal access to discover and download assets such as data and software.

Some provide workflow capabilities and access to computing resources. They provide access to

facilities and equipment. Thus the e-VRE of VRE4EIC has to facilitate user access to the e-RIs,

overcome the heterogeneities (interoperation) and provide the services identified in the user

requirements (D2.1) that are not provided by the e-RIs as characterised (D2.1). This is the reason why

D3.2 Gap Analysis – between D2.1 and D3.1 - is important to the developing VRE4EIC architecture for

our e-VRE.

6.1.3 e-Is

Most of the e-RIs utilise the e-Is to provide required utility functions. The e-VRE of VRE4EIC will thus –

in general – utilise the e-Is via the e-RIs. However, the e-VRE will itself require to use GEANT, an AAAI

environment such as AARC2, some local / temporary storage and curation with provenance facilities

(EUDAT), access to scholarly publications (OpenAIRE) and access to – and utilisation of – advanced

computing facilities such as EGI, PRACE or EOSC.

6.2 Use Case Sequence Diagrams

In previous sections, with emphasis in Section 4, we highlighted the main characteristics of the

Reference VRE Architecture and the needs that drive the proposed composition of components.

From the functional point of view, these needs, which are the result of use cases and requirements

obtained by communication with VRE users, should be reflected in the architecture.

In particular, it should be clear enough to specify how the various user activities will be supported by

the underlying architecture and the interplay of components, in order to assess the adequacy of the

D3.1 Architecture Design

Page 50 of 89

designs. For that purpose, we hereby present four commonly met, domain-independent activities

performed by VRE users, namely simple searching within the VRE, cross searching among various

eRIs, browsing on the retrieved data and data publishing. We provide sequence diagrams that

contain class, interactions, dependencies and activities among components, helping in making a

clearer connection between the domain-independent use cases, the sequence of steps that are

involved and the components of the architecture that contribute towards accomplishing these steps.

Tables 2, 2.1 and 2.2 in the Annex, assist even further in creating a much more detailed picture of this

correlation, describing the Generalized and the elementary Functions that are triggered while

performing each step, as well as the requirements that are satisfied. This way, a complete cycle is

filled, starting from the use cases and leading to the requirements, as these have been identified by

the users.

6.2.1 Search (simple/advanced)

In general the simple search process includes three main steps. The first one is the query preparation,

the second one is the query submission and the third one is the returning of the results. The Query

Manager(QM) component has the main responsibility for this process for both cases: an agent which

calls a search api or a human user which interacts with the VRE search UI. At first, the user types a set

of terms and at the same time the Query Manager communicates with the Thesaurus component in

order to provide suggested terms based on the typed keywords and suggests similar terms by

proceeding to spell checking. There are some advanced options for the user in order to perform an

advanced search by applying an extra specific number of search criteria (i.e target data source or

dataset). Afterwards the query is submitted to the QM which examines the sources, breaks the query

into subqueries and submits the queries to the MetadataManager and the LD Manager. Finally, the

QM retrieves all results. In the case of an agent the QueryManager is called in order to return the

results through an api call. In this sequence diagram it is assumed that the user/agent has been

authenticated by AAAI. Also another assumption is that user preferences have been extracted from

his profile.

D3.1 Architecture Design

Page 51 of 89

D3.1 Architecture Design

Page 52 of 89

6.2.2 Cross search

Τhe cross search process provides the ability of searching in different data sources and datasets and

finally returns a collection of results in a unified format that has been selected at the beginning of the

query.

Similarly to the simple search for user case, the Query Manager communicates with the Thesaurus

component for the query preparation.

The next step is the query transformation. Specifically, the QM communicates with the

ModelMapper in order to perform a query translation to the desired model/schema format.

Afterwards the appropriate subqueries which have been created in the previous step are sent to the

corresponding external sources through the MOM component.

Subsequently, the federated query is submitted to the QM which also breaks the query into

subqueries and submits the queries to the MetadataManager and the LD Manager in order to

perform automatic corrections of keywords and recording the query evaluation provenance. Finally,

the ModelMapper exploits the available mappings in order to perform the data source

transformation and deliver the results in an homogeneous way to the users.

We should note that for performance reasons the transformation of data by the Model Mapper could

be done per each source instead of doing it at the end. In the case of an agent case the

QueryManager is called in order to return the homogeneous results through an API call.

In this sequence diagram, it is assumed that the requested access token has been granted for all

selected sources by AAAI and the user explicitly has defined its selection to perform a cross query in

the VRE

D3.1 Architecture Design

Page 53 of 89

D3.1 Architecture Design

Page 54 of 89

6.2.3 Results browsing

The results browsing process relies on the interaction of the user with the corresponding

components of the user interface, as well as with the components it is connected to. After

performing a search using the QueryManager component, the user inspects the results. More

specifically the user has the following capabilities:

• Browse over the results. The returned results are divided into pages so that the user can

browse over them easily. So the user can start browsing over the results by selecting the

available pages. All this interaction is being carried out from the UI components.

• Fetch more results. As soon as the user consumes all the available pages containing results

(the top-K results), he/she can ask for more results from the VRE Temporary Storage

component; this component is being used for storing all the results that are returned from

the QueryManager component, however the UI component shows only the top-K results (for

efficiency reasons). If there are more results to show then the UI is being updated and the

new results are integrated with the initial ones. If there are no more results to show, then

the user is being notified and the corresponding option (Fetch more results) is being disabled

in the UI.

• Browse over the results using facets. The user can start browsing over the results by

exploiting a set of facets (i.e. dataset type, latest modification date, etc.). These facets allow

the user to restrict the results to those having the particular values. All the corresponding

interactions are carried out by the UI components.

• Download a dataset. The user can select to download a dataset. For this reason the MOM

component is exploited for retrieving and downloading the dataset.

• Download a dataset in a specific format. The user can select to download a dataset in a

specific format. For this reason the MOM component is exploited for retrieving and

downloading the dataset and the ModelMapper component (and in particular the Data

Transformer subcomponent) for taking care of the transformation.

• Check for more information about a result. The user examines one results and wants to find

more information about the results (more metadata). For this reason it communicates with

the QueryManager component and search for more relevant information or related

resources.

It is assumed that in every step the AAAI component has authenticated the user/agent and has

authorized and given access according to the related permissions.

D3.1 Architecture Design

Page 55 of 89

D3.1 Architecture Design

Page 56 of 89

6.2.4 Data publishing

The data publishing process refers to the ingestion of the related metadata of data resources to the

infrastructure’s repositories to enable their discovery and access.

The first step of the data publishing process is the acquisition of the metadata. The metadata in their

initial format can be provided either by a user/agent a) by importing the complete metadata record

files along or b) by filing a form in the UI, or by automatically (and periodically) harvesting the

metadata by the underlying sources (eRIs).

The metadata records are imported to the VREs workspace, along with the metadata standard that

has been used for their representation.

If the metadata standard is different from the centralized underlying schema of the infrastructure

(CERIF) then the ModelMapper component is called.

If there is a mapping in the ModelMapper’s repository between the centralized schema and the

metadata records schema, the metadata records are transformed with respect to the centralized

schema.

If the mapping does not exist then the user/agent creates the mapping between the two schemata,

and the transformation of the records is applied according to the new mapping.

The final step of the data publishing process is the ingestion of the (transformed) metadata records

to the metadata catalogue by the MetadataManager.

An intermediate storage layer for temporarily storing the uploaded metadata before transforming

them into a proper format, is being exploited.

This layer is being provided through the VRE Temporary Storage component.

It is assumed that in every step the AAAI component has authenticated the user/agent and has

authorized and given access according to the related permissions.

D3.1 Architecture Design

Page 57 of 89

D3.1 Architecture Design

Page 58 of 89

7 Outlook
The Reference Architecture presented in this deliverable represents one outcome of the first year of

work of the project VRE4EIC. A final Reference Architecture will be produced at the end of the

project, in two years from the submission of the present deliverable. This Section briefly describes

the steps that will lead to the final architecture, highlighting the contributions from the various task

that will be involved in the process during the remaining two years time.

A revised version of the Reference Architecture will be produced by the end of the second year of the

project, for internal usage only. This revision has been deemed as necessary by the project

management as a consequence of the fact that the requirements deliverable (D2.1) will be in turn

refined three times during the second year of the project. These refinements have been planned in

order to accommodate the collection of a large amount of requirements, along with the on-going

characterization of existing e-RIs. Each time the requirements and the e-RI characterizations will be

updated, the Reference Architecture will consequently be revised. The revision task will be greatly

simplified by the fact that the architecture development team has maintained the traceability of the

architecture, which links the requirements to the components in the architecture. Thus it will be

possible to know which requirement is implemented by which interface, making it easier to take into

account updated requirements.

In parallel to the revision of the architecture, an implementation phase will be carried out, comprised

of three tasks:

● Task 3.2 – Gap Analysis Existing, until M21, to determine the components to be developed

● Task 3.3 – Development of Building Blocks, until M36, to develop the previously selected

components

● Task 3.4 – Integration of Reference VRE and Enhanced Existing VREs, until M36, to integrated

the implemented components into the architectures of EPOS and ENVRIPlus.

It is expected that both Task 3.3 and 3.4 will bring new insights that may lead at a revision of the

Reference Architecture. In particular,

● in developing building blocks, the VRE4EIC development team will rely on the re-use of

existing technologies and standards, which in turn may lead to the revision of some

interfaces of the Reference Architecture, for instance to align an interface with the selected

standard or technology; this alignment may be propagated into the Reference Architecture, if

the standard or technology provoking it are important enough;

● In integrating the Reference Architecture with EPOS or ENVRIPlus, the VRE4EIC development

team may need to adapt some interface to the target architecture. As for the previous point,

this adaptation may be propagated into the Reference Architecture, if it enhances the quality

of the Reference Architecture with respect to the principles outlined in Section 2.

Finally, a revision of the Reference Architecture may be fired by the developments in WP4 on

Interoperability or WP5 on Trust, Security and Privacy. In particular,

● Work in WP4 may lead to a revision of CERIF, the data model which the Reference

Architecture is based. Consequently, some interfaces in the Reference Architecture may have

to be modified. It is worth mentioning that also the reverse may happen: the development of

the Reference Architecture may bring up some representational inadequacies of CERIF and

lead to an enhancement of the model to cope with those inadequacies. This has not

happened during the development of the present Reference Architecture, but may happen in

any one of its refinements, described above.

● Work in WP5 may lead to a revision of the AAAI component of the Reference Architecture.

D3.1 Architecture Design

Page 59 of 89

8 Conclusions
The VRE4EIC initial Reference Architecture has been provided by the present deliverable, and

contextualized in several ways.

The methodology followed in deriving the architecture has been first illustrated, to the end of

connecting the work reported here with the literature and the approaches for architecture

development in the context of software engineering.

The analysis of requirements leading to the architecture has been subsequently reported, to the end

of grounding the architecture to the needs that it is expected to respond to. The traceability of the

architecture has also been derived, linking the architecture’s components to the requirements. These

links will be necessary to manage in an optimal way the evolutions of the Reference Architecture

leading to the final architecture, to be delivered at the end of the project.

The Reference Architecture has been provided, in terms of three kinds of UML diagrams:

● A main component diagram highlighting the components of the architecture, their provided

and used interfaces;

● A series of sequence diagrams highlighting the interactions occurring in the execution of the

main methods.

A main usage scenario of the architecture has been illustrated by showing the steps need for e-RIs to

join an existing eVRE.

Finally, the roadmap from the current architecture to the final architecture has been outlined,

showing the contributions expected from the various project activities that may provide useful inputs

or elements to the architecture.

D3.1 Architecture Design

Page 60 of 89

9 Annexes

9.1 Architectural components

Table 1. e-VRE conceptual components and sub-compon ents

Component ID Subcomponents/

Datasets

Description

Authentication,
Authorization,
Accounting
Infrastructure
(AAAI)

 Authentication, Authorization, Accounting Infrastructure

Metadata
Manager (MM)

 Manages metadata about e-VRE entities: resource
descriptions, user descriptions, provenance information,
preservation metadata etc. (CERIF)

User Catalogue Contains user profiles and preferences

Resource Catalogue Contains metadata about resources available in e-VRE,
i.e. datasets, services, workflows, instruments, networks
of sensors, software applications etc

Preservation
Catalogue

Contains information related to the preservation process

Provenance
Catalogue

Contains metadata related to provenance

Interoperability
Manager (IM)

 Manages interactions with e-RIs

Query Manager (QM) Manages local and distributed queries, collects result
sets

Data Model Mapper
(DMM)

Manages data and query format conversion

Adapters Ad hoc components, that synchronously interacts with e-
RIs resources

Message-Oriented
Middleware (MOM)

Manages asynchronous interactions with eRIs resources
using messaging protocols

e-VRE Web Services
(e-VRE WS)

Published to enable external applications to interact with
e-VRE

D3.1 Architecture Design

Page 61 of 89

Workflow
Manager (WM)

 Manages business processes and and scientific
workflows, information about workflows are stored in the
Metadata Manager

Workflow
configurator

Provides functionalities: to build/edit/store execution
plans, to control and monitor processing flows execution.

Workflow executor Manages workflow execution, including data staging

Workflow repository Provide functionalities to store and retrieve workflows,
workflows will be published using LD manager

Linked Data
Manager (LDM)

 Manages the publication of information in e-VRE as
Linked Data

SPARQL Endpoint The SPARQL service endpoint allows retrieving
resources and services published by e-VRE as RDF
documents

LD API The LD API: maps CERIF metadata records in RDF,
implements metadata enrichment of RDF records, i.e.
adds to records typed links to vocabularies and
thesaurus entries, Implements content negotiation

System Manager
(SM)

 Implements functionalities to define and manage the
VRE, e.g. specify the resources, specify the apps, and to
deploy the defined VRE in the available resources.

Node Manager (NM) Implements the functionalities to deploy, manage and
run an instance of e-VRE on a specific hardware

User Manager (UM) Manages user profiles and provides

collaboration/communication functionalities for users. It

provides the functionalities to add/update/remove user
profiles, to set up users permissions, to manage users
preferences, to configure users working environments

Resource manager
(RM)

Manages resource information: add/update/remove
resource descriptions, associate resources to security
policies, etc.

App Manager (AM) This component provides functionalities to deploy and
manage applications that operates on e-VRE resources.
It can be used also to embed applications such as Wiki
or forums etc.

D3.1 Architecture Design

Page 62 of 89

9.2 Generalised functions

The tables in this subsection clarify the connection between the different viewpoints already described
in the document. Specifically, as identified in the use cases, there are a number of domain-
independent, general tasks that a user of a VRE typically performs, such as querying for metadata,
asserting information in the catalogues, and others. These are called Generalized Functions. Such
Generalized Functions are usually composed of elementary Functions, e.g., cross-searching, which
are structured based on specific series of steps. The elementary Functions have a direct connection
with the Requirements, as they have been developed, in order to satisfy one or more of them. Notice
that even elementary Functions can be further decomposed into other functions, according to the level
of abstraction needed.

Table 2 connects the Generalized Functions extracted from the use cases with the elementary
Functions and the steps involved. Then, Tables 2.1 and 2.2 below elaborate on the elementary
Functions, associating them with the relevant requirements of each. In addition, they correlate these
functions with the corresponding components of the architecture which implements them, as already
explained in sections 3 and 4.

Table 2. Generalised Functions from Domain-Independ ent Use Cases and Requirements

Generalized
Functions

Pre-condition Steps Involved Included/
Specialized by Fun

GF1:
Querying

Fun21 : Agent
Authentication
(the agent has
been
succesfully
authenticated)

● The agent accesses
the VRE Search UI (in case of a
human user) or the corresponding
Search API (in case of software
entity)

● The agent prepares a
query to be submitted, involving
○ keywords, and/or
○ topic filtering, and/or
○ target (internal or external)

sources, and/or
○ target datasets, and/or
○ other filtering criteria

● During the query
preparation process, the system
offers spell checking and
recommendations (Thesaurus - MM)

● The query is submitted
to the QueryManager by the agent.

● The Query Manager
receives a query and starts parsing
it. Specifically:
○ The Query Manager (QM)

examines the sources
○ The QueryManager breaks the

query into subqueries
○ The QueryManager submits the

queries (to MetadataManager
and LD Manager)

Fun1 :Simple Search

Fun2 :Cross Search

Fun3 : Advanced Search

(the next ones are neither
primitive nor abstract; they
are compound functions)

Fun11 : Data Collection

Fun12 : Data Sampling

Fun19 : Data Discovery

D3.1 Architecture Design

Page 63 of 89

● The QueryManager
retrieves all results
○ The QM merges the results
○ The QM returns the integrated

results
● The agent browses

over the results (IDs of resources)
(see GF2: Dataset/Metadata
Exploration)

GF2:
Dataset/
Metadata
Exploration

GF1: Querying ● The agent has a list with IDs of
resources.

● The UI shows the results to the user
(only for human users)
○ The UI creates the pages with

the results
○ The UI shows some information

about the query evaluation (might
require communicating with other
components for retrieving such
information)

● The user selects to browse for
more information about a specific
result

● The above request is submitted to
QueryManager, along with the
selected source (from GF1)

● The QueryManager inspects the
given sources and submits the
corresponding requests to
MetadataManager and LDManager

● The QueryManager returns the
integrated results as a graph

● The UI shows the graph to the user
(only for human users)

Fun4 :Dataset Viewing

Fun5 : Dataset Preselection

Fun6 : Dataset
Customization

(the next ones are neither
primitive nor abstract; they
are compound functions)

Fun19 : Data Discovery

Fun11 : Data Collection

Fun12 : Data Sampling

GF3:
eRISoftware

Access to a
eRI service
through VRE
(e.g.,
instrument-
related or other
non-VRE
service)

● The agent accesses
the menu or UI or APIs that contains
the list of instruments/real-time
sensor data/processes/third-party
software etc

● The agent selects the
one it desires.

● The system redirects
the agent to the eRI interface

● The agent interacts
directly with a dedicated UI (e.g., it
accesses/calibrates/configures
instruments)

● The system maintains
a timestamped log with the user's
actions

Fun7 : Instrument
Integration

Fun8 : Instrument
Configuration

Fun9 : Instrument
Calibration

Fun10 : Instrument
Monitoring

(the next ones are neither
primitive nor abstract; they
are compound functions)
Fun11 : Data Collection

Fun12 : Data Sampling

GF4: Data
Cataloguing

 ● The user wishes to
register a new resource to the VRE
catalogue or update an existing one

● She selects the type of

Fun13 : Resource
Registration

Fun14 : Resource Update

D3.1 Architecture Design

Page 64 of 89

resource, in order to be redirected to
the appropriate UI

● She fills in forms
asking for the necessary metadata.
Some fields are already completed
by the system.

● The system checks the
metadata and returns the
corresponding messages

● The user performs
quality improvement

● The user selects to
store the metadata to the catalogue

● (if needed) The system
communicates with the underlying
eRI to verify that the dataset
involved have been stored
successfully

● If the previous step is
successful, the system stores the
metadata to the corresponding
catalogue

● The system also
updates the preservation and
provenance catalogues as
appropriate

Fun17 : Resources
Annotation

Fun18 : Metadata
Harvesting

GF5:
Workflow
Enactment

 <TBD>
● The user builds the

workflow using the UI of the
Workflow Manager

● The workflow is
deployed on the execution engine(s)

● The workflow is
executed

● The WF Manager
monitors the workflow tasks and
notify the user for registered update

● The results are stored
in a temporary area accessible by
the user

Fun15 : Workflow
Enactment

(the next ones are neither
primitive nor abstract; they
are compound functions)

Fun12 : Data Sampling

Table 2.1 Query Requirements

Function
ID

Requirement ID Function Description Involved
components

Related Generic
Functions &
Notes

Fun1 :
Simple
Search

PRQ10
Simple search

PRQ11
Multiple format
support

PRQ14
Spelling checking

The user performs a simple
search
1. The user inserts in a form a list
of keywords
2. The user submits the form
3. The system retrieves the query
results and returns them to the
user

UI

IM
Query
Mediator
Query
Manager

MM

GF1: Querying

D3.1 Architecture Design

Page 65 of 89

PRQ15
Query suggestion

IRQ5
Citation Tracking

Resource
Catalogue

LD

AAAI

Fun2 :
Cross
Search

PRQ12
Cross searching

PRQ14
Spelling checking

PRQ15
Query suggestion

PRQ20
Linking external
resources

IRQ5
Citation Tracking

The user performs a cross
search
1. The user ticks on the cross
searching option
1.1. (optional): The user defines
a list of external sources
2. The user inserts in a form a list
of keywords
3. The user submits the form
4. The system retrieves the query
results and returns them to the
user

UI

IM
Query
Manager

MM
Resource
Catalogue

LDM

AAAI

GF1: Querying

Fun3 :
Advanced
Search

PRQ13
Advanced search

PRQ14
Spelling checking

PRQ15
Query suggestion

PRQ16
Query Filter

IRQ5
Citation Tracking

The user performs an
advanced search
1. The user clicks on the
advanced search option
2. The user selects/edits a
number of search criteria
3. The user inserts in a form a list
of keywords
4. The user submits the form
5. The system retrieves the query
results and returns them to the
user

UI

IM
Query
Manager

MM
Resource
Catalogue
Provenance
Catalogue
Preservation
Catalogue

LDM

AAAI

GF1:Querying

Fun4 :
Dataset
Viewing

PRQ17
Datasets viewing

The user views all the datasets
metadata
1. The user performs simple
search without submitting any
keywords
2. The system retrieves the full
list of datasets’ metadata

UI

IM
Query
Mediator
Query
Manager

MM
Resource
Catalogue

LDM

AAAI

GF2: Dataset/
Metadata
Exploration

D3.1 Architecture Design

Page 66 of 89

Fun5 :
Dataset
Preselectio
n

PRQ18
Datasets pre-
selection

The user pre -selects datasets
1. The user views all the datasets
(PRQ17)
2. The user selects the datasets
to search on

UI

IM
Query
Mediator
Query
Manager

MM
Resource
Catalogue

LDM

AAAI

GF2: Dataset/
Metadata
Exploration

Fun6 :
Dataset
Customiza
tion

PRQ19
Dataset
customization

The user selects a set datasets
to be exploited during search
1. The user selects his profile
2. The user views all the datasets
(PRQ17)
3. The user selects the datasets
to search on

UI

IM
Query
Mediator
Query
Manager

MM
Resource
Catalogue
User
Catalogue

LDM

AAAI

GF2: Dataset/
Metadata
Exploration

Table 2.2 Data Requirements

Function
ID

Requirement ID Function Description Involved
components

Related Generic
Functions &
Notes

Fun7 :
Instrument
Integration

CLRQ1
Instrument
Integration

The user views many
instruments
1. The user selects to views all
the available instruments
2. The system returns an
integrated list of instrument
description to the user

UI

IM
Query
Mediator
Query
Manager

MM
Resource
Catalogue

LDM

GF3:
eRISoftware

D3.1 Architecture Design

Page 67 of 89

AAAI

Fun8 :
Instrument
Configurati
on

CLRQ2
Instrument
Configuration

CLRQ4
Instrument
Access

CLRQ5
Configuration
Logging

CLRQ10
Process Control

The user configures an
instrument
1. The user selects an instrument
2. The system redirects the user
to the RI interface
3. The user configures the
instrument (The RI creates the
appropriate logs)

UI

SM
Resource
Manager

MM
Resource
Catalogue

IM

AAAI

GF3:
eRISoftware

Fun9 :
Instrument
Calibration

CLRQ3
Instrument
Calibration

CLRQ4
Instrument
Access

The user calibrates an
instrument
1. The user selects an instrument
2. The system redirects the user
to the RI interface
3. The user calibrates the
instrument

UI

SM
Resource
Manager

MM
Resource
Catalogue

IM

AAAI

GF3:
eRISoftware

Fun10 :
Instrument
Monitoring

CLRQ6
Instrument
Monitoring

CLRQ7
(Parameter)
Visualisation

CLRQ8
(Real-Time)
(Parameter/Data
) Visualisation

The user monitors an
instrument
1. The user selects an instrument
2. The system redirects the user
to the RI interface
3. The RI returns information to
the user on the instrument’s
status/parameters/data

UI

SM
Resource
Manager

MM
Resource
Catalogue

IM

AAAI

GF3:
eRISoftware

Fun11 :
Data
Collection

CLRQ11
Data Collection

CLRQ12
(Real-Time)
Data Collection

The user retrieves data from an
instrument
1. The user performs a cross
searching advanced search
2. The system returns a list of
results and the hosting RIs
3. The user retrieves/collects the
data from the RIs

UI

IM
Query
Manager

MM
Resource
Catalogue
User
Catalogue

GF1: Querying

GF2: Dataset/
Metadata
Exploration

GF3:
eRISoftware

D3.1 Architecture Design

Page 68 of 89

Resource
Catalogue

SM
Resource
Manager

LD<

AAAI

Fun12 :
Data
Sampling

CLRQ13
Data Sampling

The user performs data
analysis
1. The user performs a cross
searching advanced search
2. The system returns a list of
results and the hosting RIs
3. The user retrieves/collects the
data from the RIs
4. The user selects the analysis to
be performed (workflow)
5. The system returns the
analysis results

UI

SM
Resource
Manager

MM
Resource
Catalogue
User
Catalogue

IM
Query
Manager

WM

AAAI

GF1: Querying

GF2: Dataset/
Metadata
Exploration

GF3:
eRISoftware

GF5: Workflow
Enactment

 CTRQ9
Online Dataset
Editing

CLRQ14
Noise Reduction

CLRQ15
Data
Transmission

CLRQ16
Data
Transmission
Monitoring

PVRQ1
Data
Provenance

PVRQ2
Data Acquisition
Information

RIs responsibility

D3.1 Architecture Design

Page 69 of 89

PVRQ3
Data Curation
Information

PVRQ4
Data Publication
Information

IRQ1
Data
Identification

IRQ3
Raw Data
Identification

IRQ4
Data Citation

CRQ1
Data Product
Generation

CRQ7
Data Replication

CRQ8
Replica
Synchronisation

PRQ7
Data
Compression

PRQ29
Data Processing
Monitoring

PRQ35
Data Backup

Fun13 :
Resource
Registratio
n

CLRQ17
Data
Cataloguing

CRQ2
Data Quality
Checking

CRQ3
Data Quality
Verification

CRQ6
Data Storage &

The user registers a resource
performing (meta) data quality
checking
1. The user selects to
register/update a new resource in
the catalogue
2. The system checks the
metadata and returns the
corresponding messages
3. The user performs the quality
improvement
4. The user selects to store the
metadata to the catalogue
5. The system stores the
metadata to the corresponding

UI

SM
Resource
Manager

MM
Whole

IM
DMM

LDM

GF4: Data
Cataloguing

D3.1 Architecture Design

Page 70 of 89

Preservation

PRQ4
Resource
Registration

PRQ5
(Metadata)
Registration

PRQ6
Data Conversion

CLRQ9
Experiment

CTRQ15
Funding body
Information

CLRQ18
Data Publication

IRQ2
Data Provider

IRQ4
Data Citation

PRQ8
Semantic
Harmonisation

catalogues AAAI

Fun14 :
Resource
Update

CRQ4
Data Versioning

The user registers a new
version of a resource
1. The user selects to register a
new resource version in the
catalogue
2. The system updates the
resource, preservation and
provenance catalogues
accordingly

UI

SM
Resource
Manager

MM
Whole

IM
DMM

LDM

AAAI

GF4: Data
Cataloguing

Fun15 :
Workflow
Enactment

CRQ5
Workflow
Enactment

PRQ26
Scientific

The user creates a workflow
1. The user creates a workflow
2. The user select to run the
workflow
3. The system returns the
workflow’s results

UI

WM

MM

GF5: Workflow
Enactment

D3.1 Architecture Design

Page 71 of 89

Workflow
Enactment

PRQ28
Data Processing
Control

ORQ2
Processing
Parallelisation

ORQ4
Data
Compartmentiza
tion

IM

AAAI

Fun16 :
Access
Control

CRQ6
Data Storage &
Preservation

Fundamental Infrastructure’s
Functionality

MM

AAAI

Fun17 :
Resources
Annotation

PRQ1
Resources
Annotation

PRQ2
(Data)
Annotation

PRQ32
Quality Rating

PRQ34
Data Tag

The user annotates
data/resource
1. The user selects a resource
2. The user annotates the
resource
3. The system stores the
appropriate information

UI

SM
Resource
Manager

MM
Resource
Catalogue
Metadata
Catalogue

GF4: Data
Cataloguing

Fun18 :
Metadata
Harvesting

PRQ3
Metadata
Harvesting

The user enables metadata
harvesting
1. The user selects a source to be
harvested
2. The user selects the frequency
3. The system harvests the
metadata and either registers a
new resource or updates an
existing one’s metadata

UI

SM
Resource
Manager

MM
Whole

IM
DMM

LDM

WM

GF4: Data
Cataloguing

Fun19 :
Data
Discovery

PRQ9
Data Discovery
and Access

PRQ31

The user discovers data using
the searching capabilities (see
Query Requirements)

UI

IM
Query
Manager

GF1: Querying

GF2: Dataset/
Metadata
Exploration

D3.1 Architecture Design

Page 72 of 89

Dataset
Download

MM
Resource
Catalogue

LDM

Fun20 :
User/
Agent
Registratio
n

CTRQ4
Interface
Customization

CTRQ5
Wizard
Configuration

CTRQ7
Multilingual
Interface

1. On the user device: User goes
to eVRE portal in the browser,
and creates her/his own user
profile using functionalities
provided by User Manager.
2. The User Manager interacts
with MM to register the profile and
gets from the MM the
configuration information needed
to configure the user environment
3. Once the profile is created UM
asks "Do you want to register this
device with eVRE as
authenticator?” User agrees

4. Depending on the device UM
can ask the user to download and
install a software implementing
VRE4EIC authentication API (to
enable the device to implement
authenticator client functionalities)
5. UM registers the device in MM
and AAAI as authenticator
6. UM shows message,
"Registration complete."

UM

AAAI

For details on
the
authentication
and registration
framework
adopted in
eVRE see the
section Notes on
the E-VRE
authentication
protocol above

Fun21 :
Agent
Authenticati
on

CTRQ1
Login

CTRQ31
Accounting

1) User Authentication
(external authenticator mode):

- User access E-VRE in browser,
sees an option "Sign in with your
registered device."
- User chooses this option and
gets a message from the browser,
"Please complete this action on
your phone."
-On the phone :
 - User sees a notification similar
to "Sign in to eVRE?”
- User selects this notification.
- User is shown a list of their
VRE4EIC identities, e.g., "Sign in
as Alice / Sign in as Bob."
- User picks an identity and
provides it.
-On the laptop :

UI

UM

AAAI

MM (Fun)

D3.1 Architecture Design

Page 73 of 89

- Web browser shows that the
selected user is signed in, and
navigates to the signed-in
page/restore the user session etc.

2) Device authentication
(external authenticator mode)

- User connects an external
instrument to a device or a
network connected to eVRE

- The device sends a message to
eVRE to notify that he wants to
add a new device to the Research
Environment
- On the user laptop/smartphone
signed to eVRE,user sees a
prompt similar to “Authorise
instrument to sign in on eVRE,
chose identity”
- User is shown a list of their
eVRE identities, e.g., "Sign in as
Alice / Sign in as Bob”.
- User picks an identity and
provides it.
- Instrument is ready to operate
on eVRE.

Fun22 :
Continuous
Access

CTRQ2
Continuous
Access

1)Continuous access: save
session Use Case (session
explicitly closed)

- Agent authenticates on eVRE

- if present, the previous session
is restored

- agent operate on eVRE
- Agent invoke ‘sign out’
functionality in the UM GUI, or
specific ‘save session’
functionality

- UM saves all information related
to the current session in a specific
storage assigning an identifier to
the saved session

- UM interacts with the MM
manager in order to: i) associate
the session identifier to the User
Profile and ii) change the status of
the User profile in case of sign
out
- If required UM interacts with
AAAI, this could be required when

UI, UM, AAAI,
MM

This requirement
has been
interpreted as:
‘maintain user’s
session across
multiple
connections’

D3.1 Architecture Design

Page 74 of 89

we need to notify to external eRI
that the connection is closed and
the user is no longer operating on
their resources

2) Continuous access: save
session Use Case (session not
explicitly closed)

- Agent authenticates on eVRE
- if present, the previous session
is restored

- Agent operate on eVRE

- For a defined amount of time no
action occurs
- UM automatically saves all
information related to the current
session in a specific storage
assigning an identifier to the
saved session

- UM interacts with the MM
manager in order to associate the
session identifier to the User
Profile
3) Continuous access: restore
session Use Case

- Agent authenticates on eVRE

- The User Manager interacts with
Metadata Manager to discover if a
session identifier is associated to
the user profile

- If an id is returned the
information is retrieved from the
specific storage

- The UM interacts with the AAAI
to verify that the user can access
the content of the old session-is
restored

-Agent operates on eVRE

Fun23 :
Update
Alert

CTRQ8

Update Alert

CTRQ10
Notification

1) Update Alert: event
subscription

- User authenticates on eVRE

- The user uses User Manager to
subscribe to events

- The UM saves subscriptions on
the User Profile (MM) and
associate the id of the user to the
list of users subscribed to that
event in the event list
2) Update Alert: update
notification

UI, MM, UM,
RM, IM, AAAI

An user receives
a notification
when an event
she is interested
in occurs.
Generally
speaking there
could be a large
number of
events in a
eVRE, to name a
few: changes in
the lifecycle of

D3.1 Architecture Design

Page 75 of 89

- User authenticates on eVRE

- The user session is restored

- The user uses the UM
functionalities to read the alerts
related to her/his subscriptions.

processes,
changes in the
availability status
of a resource
published by a
RI, updates of a
shared
documents etc.

Fun24 :
Resource
Connection

CTRQ28
Computing
Resource
Connection

Access EGI computational
resources via OCCI

The user has previously obtained

a VOMS certificate

(http://www.eu-

emi.eu/training/cert-tutorial) via

AAAI functionalities, this

information is registered in the

user profile and the actual

certificate is managed by AAAI.

- User authenticates on eVRE

- The user session is restored

- User selects the EGI entry point
- The user sends a request,
validated with the VOMS
certificate, to the EGI entry point
asking for computational
resources

- The user chose the references
to the computational resources
and use them

UI, IM, AAAI,
MM

This

requirement

means the

possibility to

access

computational

or storage

resources for an

application

installed in the

eVRE. These

resources can be

provided by

eVRE

environment or

by an external

provider.

This requires

that the user has

permission to

use those

resources and

there is an

Adapter in the

IM that interacts

with those

resources,

Notes on the E-VRE authentication protocol

This section contains a short description of the authentication protocol adopted in VRE4EIC, in order
to explain the infrastructure underlying the Functions 20 and 21 described in the table above.
The E-VRE authentication protocol will be based on scoped credentials assigned to a User or an
Agent and controlled by authenticators (https://en.wikipedia.org/wiki/Authenticator).
Please note that we are referring here to the authentication process between a user and the E-VRE
system, it will ‘wrap’ the protocols adopted by VRE4EIC AAAI infrastructure.

The scoping of the credentials will be enforced jointly by a User Agent implementing the E-VRE
authentication API and an authenticator that holds the credential, by constraining the availability and
usage of credentials.

D3.1 Architecture Design

Page 76 of 89

Scoped credentials are located on authenticators, which can use them to perform operations subject to
user consent.
According to outcome of D2.1 we should have two types of authenticator:

● Authenticators located in the same device (e.g., smartphone, tablet, desktop PC) as the user
agent is running on.

● Authenticators operate autonomously from the device running the user agent, and accessed
via network or other protocols. This last part is needed mainly to implement requirements
about external instruments or devices.

More than one user profile can be managed by a single authenticator: we need functionalities to add
user profiles to an authenticator.

9.3 Requirements and components

The tables in this Section show the components involved in the implementation of user

requirements. They have all the same structure, and each of them reflect a pillar of requirements. For

every requirement pillar, the table highlights: the relationships with other requirements, the

relationships with the metadata catalogue (“CERIF entities” column) and notes and comments that

we have on the requirement.

Before each table, a diagram is given reporting the incidence matrix between the components in the

Reference Architecture (row) and the requirement (column).

Data Identification and Citation

UM - User Manager, RM - Resource Manager, AM - App Manager, IM - Interoperability
Manager, MM - Metadata Manager, LDM - Linked Data Manager, QM - Query

Table 3.1 Data Identification and Citation

Req. ID Description Rel.

with

other

req.

Components

involved

CERIF

entities

Notes and Comments

IRQ1 Data CLRQ17 AAAI, MM, IM, cfResultPr

D3.1 Architecture Design

Page 77 of 89

Identification LDM oduct

(dataset),

associated

cfFedId

IRQ2 Data

Provider
 AAAI, MM cfOrgUnit_

ResultPrid

uct

IRQ3 Raw Data

Identification

IRQ1 AAAI, IM

IRQ4 Data Citation
IRQ1 AAAI, RM, MM

IRQ5 Citation

Tracking
 MM Through the exploitation of the

Provenance Catalogue

Data Curation

UM - User Manager, RM - Resource Manager, AM - App Manager, IM - Interoperability
Manager, MM - Metadata Manager, LDM - Linked Data Manager, QM - Query

Table 3.2 Data Curation

Req. ID Description Rel.

with

other

req.

Components

involved

CERIF

entities

Notes and Comments

CRQ1 Data Product

Generation
 eRI’s responsibility

CRQ2 Data Quality

Checking
 RM, AAAI, MM,

IM
 Some checking and verification

is needed before including data
descriptions in our catalogues

CRQ3 Data Quality

Verification
CRQ2 AAAI, RM, MM,

IM

D3.1 Architecture Design

Page 78 of 89

CRQ4 Data

Versioning
 AAAI,RM, MM,

IM, LDM
 Only metadata update and

versioning is our responsibility

CRQ5 Workflow

Enactment
 AAAI, WM, MM,

IM

CRQ6 Data Storage

&

Preservation

 AAAI, MM we only deal with the metadata
here

CRQ7 Data

Replication

 eRIs responsibility

CRQ8 Replica

Synchronisat

ion

 AAAI, RM, MM

 eRIs responsibility

Data Cataloguing

UM - User Manager, RM - Resource Manager, AM - App Manager, IM - Interoperability Manager, MM -
Metadata Manager, LDM - Linked Data Manager, QM - Query

Table 3.3 Data Cataloguing

Req. ID Description Rel.

with

other

req.

Components

involved

CERIF

entities

Notes and Comments

CLRQ1 Instrument

Integration
 AAAI,AM, MM,

IM, LDM
 CERIF has an equipment and

a measurement entity

For this set of requirements

(CLRQ) we have to match

them to the ENVRI 6 pillars.

we assume we access the

eRI functionalities, we only

say to the users what they

D3.1 Architecture Design

Page 79 of 89

can do and instruct the eRIs

to start their sensors etc.

We act as mediators

CLRQ2 Instrument

Configuration
 AAAI,AM,MM,

IM

CLRQ3 Instrument

Calibration

CLRQ2 AAAI,AM, MM,
IM

 linked with CLRQ2

CLRQ4 Instrument

Access
 AAAI,AM, IM

CLRQ5 Configuration

Logging
 AAAI,AM, DMM,

MM, IM

CLRQ6 Instrument

Monitoring

CLRQ4 UI,AAAI,AM,
MM, IM

 Uses CLRQ4

CLRQ7 (Parameter)

Visualisation

Similar to
CLRQ6

AAAI,AM, MM,
IM

CLRQ8 (Real-Time)

(Parameter/

Data)

Visualisation

 AAAI,AM, MM,
IM

 May require data streaming
analysis

CLRQ9 Experiment
 AAAI, AM, MM,

IM, WM

CLRQ10 Process

Control
 AAAI, WM, MM,

IM

CLRQ11 Data

Collection
 AAAI, AM, MM,

IM
 A meta requirement. It contains

a lot of features. It should be
split into sub-requirements.
Will affect provenance and
preservation catalogues.

CLRQ12 (Real-Time)

Data

Collection

CLRQ11 AAAI, AM, MM,
IM

 Specialization of CLRQ11

CLRQ13 Data

Sampling
 AAAI, AM, DMM,

IM
 Can be modeled as real time

integration with a statistical
program.
Other options could be:
i) enable researchers to deploy
and run their statistical
programs on e-VRE,
ii) e-VRE provides a set of
statistical libraries Need to be
defined.

D3.1 Architecture Design

Page 80 of 89

e-RIs responsible

CLRQ14 Noise

Reduction
 e-RIs responsible

CLRQ15 Data

Transmission
 AAAI, IM, RM e-RIs responsible

CLRQ16 Data

Transmission

Monitoring

 AAAI, IM, RM e-RIs responsible

CLRQ17 Data

Cataloguing
 RI, AAAI, DMM,

MM, IM

CLRQ18 Data

Publication
 LDM, AAAI, MM This requirement seems more

generic

Data Processing

UM - User Manager, RM - Resource Manager, AM - App Manager, IM - Interoperability
Manager, MM - Metadata Manager, LDM - Linked Data Manager, QM - Query

Table 3.4 Data Processing

D3.1 Architecture Design

Page 81 of 89

Req. ID Description Rel.

with

other

req.

Components

involved

CERIF

entities

Notes and Comments

PRQ1 Resources

Annotation
 AAAI, RM, MM

PRQ2 (Data)

Annotation
 AAAI, RM, MM

PRQ3 Metadata

Harvesting
 AAAI, MM, IM

PRQ4 Resource

Registration
 AAAI, MM, IM

PRQ5 (Metadata)

Registration

PRQ4 AAAI, MM, IM

PRQ6 Data

Conversion
 AAAI, MM, IM

LDM
 Affects provenance and

preservation catalogues

PRQ7 Data

Compression
 AAAI, MM, IM,

WM

PRQ8 Semantic

Harmonisatio

n

 AAAI, DMM,

MM

 Consider
http://www.w3.org/2005/Incubat
or/ssn/ssnx/ssn which is being
formalised at
http://w3c.github.io/sdw/ssn/

PRQ9 Data

Discovery

and Access

PRQ10,
PRQ12,
PRQ13

AAAI, MM, IM
(QM)

 Access is not our responsibility.
Discovery is accomplished
through metadata and the
catalogue

PRQ10 Simple search Uses:
PRQ12

QM, AAAI , MM Search into
all / given
attributes of
CERIF
metadata

Use opensearch.org for the
query mediator. It is an
interface.
We should also guide users
how to write queries (e.g.,
suggest queries)
Simple search typically
addresses the catalogue, other
queries focus on the data
themselves.
The e-RI will also have their
own search engines. How this
integration will take place.
Merging the results is not easy!
The user may be asked how to
complete the merging process
(steer the process)

D3.1 Architecture Design

Page 82 of 89

PRQ11 Multiple format
support

Uses:
PRQ12

QM, AAAI, MM,
IM(DMM)

Metadata
for
cfResPubl
(doc),
cfMedium,(
any other
media),
cfResProd
(datasets)

PRQ12 Cross
searching

 AAAI, MM, IM
(DMM, QM)

Based on
mappings
CERIF - X

The query manager must know
the query language of datasets
involved and the mapper needs
to know the result data formats,
these info are stored on the
Resource Manager

PRQ13 Advanced
search

Uses:
PRQ12

AAAI, MM, IM
(DMM, QM)

Search into
all / given
attributes of
CERIF
metadata

There are 3 levels of queries,
existential (generic), contextual
(catalogue) and queries on the
data. The latter is very difficult,
we may decide that we only
give connections to the
underlying search facilities of
eRIs.Or we can go further and
suggest querying,
transformation, merging etc
facilities. This is an open
question for now

PRQ14 Spelling
checking

 AAAI, QM, MM Use the
thesaurus
stored in
the
semantic
layer

Need to decide the best way to
implement Language
Vocabularies

(consider opensearch.org)

PRQ15 Query
suggestion

 QM, AAAI, MM Suggest
metadata
values
‘similar’ to
xx from
attributes
stored in
CERIf
entities

similar searches to the ones the
user places

PRQ16 Query filter AAAI, QM, MM NA

PRQ17 Datasets
viewing

PRQ18 AAAI, AM, IM we focus only on metadata, not
the actual data.We could offer
an Amazon like interface, where
the different facets (topics or
subjects) of the data available
are presented

D3.1 Architecture Design

Page 83 of 89

PRQ18 Datasets pre-
selection

 AAAI, UM, MM Only authorized-users can set
up the list of datasets available
in a department

PRQ19 Dataset
customization

 AAAI, UM, MM The user (or administrator)
narrows the search to specific
types of datasets only (notice
that we only focus on
metadata here). This is
different from pre-selection,as
preselection is an one-time
process, whereas
customization is specific to
each query.

PRQ20 Linking
external
resources

 QM, AAAI, MM,
IM

 datasets given by sources not
officially connected to the VRE,
as long as they satisfy certain
baseline requirements

PRQ21 Data

Assimilation
 AAAI, WM, AM,

MM, IM(DMM)

PRQ22 Data

Analysis
 AAAI, AM, MM,,

IM(DMM), WM

PRQ23 Data Mining
 AAAI, AM, MM,

IM

PRQ24 Data

Extraction
 AAAI, AM, MM,

IM

PRQ25 Scientific

Modelling

and

Simulation

 AAAI, AM, MM,
IM(DMM), WM

PRQ26 (Scientific)

Workflow

Enactment

 AAAI, WM, AM,
MM, IM(DMM)

PRQ27 (Scientific)

Visualisation
 AAAI, AM, IM

PRQ28 Data

Processing

Control

 AAAI, WM, AM,
MM, IM(DMM)

PRQ29 Data

Processing

Monitoring

 AAAI, WM, AM,
MM, IM

PRQ30 API AAAI, IM

D3.1 Architecture Design

Page 84 of 89

PRQ31 Dataset
Download

 AAAI, IM

PRQ32 Quality Rating AAAI, MM

PRQ33 Peer Review AAAI, MM, AM

PRQ34 Data tag AAAI, MM

PRQ35 Data Backup AAAI, IM eRIs responsibility

Data Optimization

UM - User Manager, RM - Resource Manager, AM - App Manager, IM - Interoperability
Manager, MM - Metadata Manager, LDM - Linked Data Manager, QM - Query

Table 3.5 Data Optimization

Req. ID Description Rel.

with

other

req.

Components

involved

CERIF

entities

Notes and Comments

ORQ1 Large

datasets

processing

 AAAI, RM, AM,
IM, WM

ORQ2 Processing

parallelisatio

n

 AAAI, RM, AM,
IM, WM

ORQ3 Real time

processing
 AAAI,

IM(Adapter), WM

ORQ4 Data

Compartmen

talization

 AAAI, RM, AM,
IM, WM, MM

D3.1 Architecture Design

Page 85 of 89

Data Provenance

UM - User Manager, RM - Resource Manager, AM - App Manager, IM - Interoperability
Manager, MM - Metadata Manager, LDM - Linked Data Manager, QM - Query

Table 3.6 Data Provenance

Req. ID Description Rel.

with

other

req.

Components

involved

CERIF

entities

Notes and Comments

PVRQ1 Data

Provenance
 AAAI, MM

PVRQ2 Data

acquisition

information

 AAAI, MM

PVRQ3 Data curation

information
 AAAI, MM

PVRQ4 Data

publication

information

 AAAI, MM

Collaboration, Training and Support

D3.1 Architecture Design

Page 86 of 89

UM - User Manager, RM - Resource Manager, AM - App Manager, IM - Interoperability Manager, MM -
Metadata Manager, LDM - Linked Data Manager, QM - Query

Table 3.7 Collaboration, Training and Support

Req. ID Description Rel.

with

other

req.

Components

involved

CERIF

entities

Notes and Comments

CTRQ1 Login UM, AAAI cfPerson

for user +

some

profile

informatio

n as role in

cfPers_Srv

,

cfPers_Lan

g

CTRQ2 and CTRQ3 seem

special cases of CTRQ1

CTRQ2 Continuous

access

CTRQ3 UM, AAAI Keep

informatio

n linked to

cfPerson

(datasets,

services,...

) with

timestamp

?

Ubiquity, availability (both

non-functional

requirements) and multi-

channel (functional). Not

across devices, but stay

connected forever.For

example, if connection fails,

the session should be the

same after we reconnect.

D3.1 Architecture Design

Page 87 of 89

This means we need to

maintain in our servers all

users’ sessions (scalability

issues)

CTRQ3 Single login CTRQ1 UM, AAAI cfPerson

for user

+profile

informatio

n

Aka Single sign-on

CTRQ4 Interface

customizatio

n

 UM, AAAI cfPerson

for user +

profile

informatio

n

Customize the UI of each

user, based on what

activities she frequently

performs. Customization,

localization and

personalization, Accessibility

is also important

CTRQ5 Wizard

configuration

GRQ4 UM, AAAI cfPerson

for user +

profile

informatio

n

CTRQ6 User

instruction

 UM cfPerson

for user +

cfPers_Me

dium,

cfPers_Res

Publ (doc)

This aspect will include not

only tutorials at the VRE4EIC

level, but also at the eRI

level. This will give

incentives for the

researchers to generate and

upload their own tutorials

CTRQ7 Multilingual

interface

 UM cfLang /

multilingu

al

attributes

of all

entities

CTRQ7 could be included in

CTRQ5

CTRQ8 Update alert CTRQ10 SM(UM,...) But “activity streams” is

much more potent.And it is

important for

interoperability

CTRQ9 Online

dataset

editing

 AM, AAAI Link to

cfFacility

(the RI)

that has

the

cfResProd

(dataset),

The tool has to be provided

by some eRI and the users

only access the datasets of

that eRI. We send the VRE

users there.

D3.1 Architecture Design

Page 88 of 89

or to a

given

cfServ

(service)

CTRQ10 Notification CTRQ8 SM(UM,...) cfPerson

for user +

profile

informatio

n

There is a subscription

mechanism. Consider

“activity streams” for this

CTRQ11 Additional

services

interfaces

 AAAI, MM, IM cfServ A use case for the VRE

system administrator.

CTRQ12 Search for

funding

Similar
to:
PRQ10,
PRQ11,
PRQ13

QM, AAAI, MM,
IM

 We assume there is a person
populating our catalogue with
metadata about project calls. In
this case, calls are a resource
as any other.

CTRQ13 Funding

proposal
Similar

to

CTRQ12

AAAI, MM,

QM, IM

 Only the proposals accessible
by the authors and the
successful ones

CTRQ14

Electronic

funding bid
 This is irrelevant for us! There

are already complex systems
for this

CTRQ15 Funding

body

information

 QM,AAAI , MM Information about name and
address of the body or more
complex, such as policies? All
probably, even though is difficult
to implement

CTRQ16 Funding alert Similar
to:
CTRQ8,
CTRQ1
0

AAAI, UM, MM A standard query executed
periodically

CTRQ17 Research

team setup
 AAAI, MM, AM

CTRQ18 Finding

collaborators

Similar
to:
PRQ10,
PRQ11,
PRQ13

AAAI, QM, MM

CTRQ19 Expertise

finding

Similar
to:
PRQ10,
PRQ11,

AAAI, QM, MM These requirements are not
only simple queries, they are
like recommendation systems.
Decision: no recommendation

D3.1 Architecture Design

Page 89 of 89

PRQ13,
related
to
CTRQ2
1

CTRQ20

Forum tool
 AAAI,AM just a simple message

exchange system suffices at
this point, plug a tool for this

CTRQ21

SNS

integration
 AAAI, AM, IM There are simple APIs we can

integrate in our system that give
twitter buttons, etc

CTRQ22 Group

newsletter
 AM, MM

CTRQ23 Meeting

organizer
 AAAI, AM, UM Integrate a tool

CTRQ24 Digest email
 AM, MM

CTRQ25 Teleconferen

cing
 AAAI, AM, UM Considering the integration with

a teleconferencing suite

CTRQ26 Instant

message
 AAAI, AM, UM Integrate a tool

CTRQ27 Project

monitoring

 AAAI, AM, IM,
MM

 A tracking/ticketing system for
the project, like dates,
deliverables,etc. Integrate a tool

CTRQ28 Computing

resource

connection

 AM, AAAI, IM

CTRQ29 Education

support

CTRQ6 AM,MM,AAAI Does this require integration
with MOOC platforms (in the
architecture)?

CTRQ30 Financial

information
 AAAI, IM, MM A billing component is needed.

Not everyone could use for free
certain components

CTRQ31 Accounting
 AAAI, MM

CTRQ32 Workflow

engine
 AAAI, WM

CTRQ33 API
 AAAI, IM

